首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To obtain the strongest possible free radical spin adduct signal using the electron paramagnetic resonance spectroscopy-spin trapping technique, it is desirable to load an animal with the highest dose of spin trap possible. One hundred and twenty six male Sprague-Dawley rats were used to establish the toxic dose range for PBN (-phenyl N-tert butyl nitrone) and 18 other similar spin traps. The lethal dose of PBN was found to be approximately 100 mg/100 g BW (0.564 mmol/100 g). The 18 other compounds were then tested, and their toxicities were gauged in terms of molar equivalents to PBN. Of these spin traps, DMPO (5,5-dimethyl-1-pyrroline-N-oxide) was found to be the least toxic (no toxic signs at twice the lethal dose for PBN) while 2,6-difluoro-PBN and M4PO (3,3,5,5-tetramethyl-1-pyrroline-N-oxide) were the most toxic, both causing death at one eighth the PBN-equivalent lethal dose. Nine of the 18 nitrones appeared non-toxic at the 0.25 PBN-equivalent lethal dose level.  相似文献   

2.
We studied the effects of CG-4203, a novel stable prostacyclin analog, in a severe model of traumatic shock in rats. Traumatic shock was produced by Noble Collip drum trauma and was characterized by marked hypotension, a 4- to 5-fold increase in plasma cathepsin D and myocardial depressant factor activities, and survival time of 95 +/- 15 minutes. Treatment with CG-4203 (100 ng/kg/min) significantly prolonged survival time to 194 +/- 20 min (p less than 0.002). Traumatized rats treated with CG-4203 exhibited significantly lower plasma activities of the lysosomal hydrolase cathepsin D (p less than 0.05). Furthermore, the plasma accumulation of myocardial depressant factor (MDF) activity was also significantly blunted in traumatized CG-4203 treated rats when compared with traumatized rats receiving only the vehicle (p less than 0.01). Our results suggest that a combination of membrane stabilizing and anti-proteolytic effects and inhibition of platelet aggregation may mediate the protective effects of CG-4203 in traumatic shock.  相似文献   

3.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125–400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

4.
Preexisting magnesium deficiency may alter the susceptibility of rat hearts to postischemic oxidative injury (free radicals). This was examined in rats maintained for 3 weeks on a magnesium-deficient (Mg-D) diet with or without concurrent vitamin E treatment (1.2 mg/day, SC). Magnesium-sufficient (Mg-S) rats received the same diet supplemented with 100 mmol Mg/kg feed. Following sacrifice, isolated working hearts were subjected to 30-, 40-, or 60-min global ischemia and 30-min reperfusion. Postischemic production of free radicals was monitored using electron spin resonance (ESR) spectroscopy and spin trapping with -phenyl-N-tert butylnitrone (PBN, 3 mM final); preischemic and postischemic effluent samples were collected and then extracted with toluene. PBN/alkoxyl adduct(s) (PBN/RO·; H = 1.93 G,N = 13.63 G) were the dominant signals detected in untreated Mg-S and Mg-D postischemic hearts, with comparably higher signal intensities observed for the Mg-D group following any ischemic duration. Time courses of postischemic PBN/RO· detection were biphasic for both groups (maxima: 2–4 and 8.5–12.5 min), and linear relationships between the extent of PBN/RO· production and the severity of both mechanical dysfunction and tissue injury were determined. Following each duration of ischemia, Mg-D hearts displayed greater levels of total PBN adduct production (1.7 –2.0 times higher) and lower recovery of cardiac function (42–48% less) than Mg-S hearts. Pretreating Mg-D rats with vitamin E prior to imposing 40-min ischemia/reperfusion, led to a 49% reduction in total PBN/RO· production, a 55% lower LDH release and a 2.2-fold improvement in functional recovery, compared to untreated Mg-D hearts. These data suggest that magnesium deficiency predisposes postischemic hearts to enhanced oxidative injury and functional loss, and that antioxidants may offer significant protection against pro-oxidant influence(s) of magnesium deficiency.  相似文献   

5.
Chen J  Zhang J  Zhao Y  Yuan L  Nie X  Li J  Ma Z  Zhang Y  Wang Q  Chen Y  Jin Y  Rao Z 《Cell and tissue research》2007,329(2):231-237
We have examined, by immunocytochemical methods and nociceptive behavior assessment in rats, whether astrocytes in the parabrachial nucleus (PBN) are involved in the regulation of traumatic occlusion. The expression of glial fibrillary acidic protein (GFAP) in PBN of ipsilateral and contralateral sides was up-regulated 4 h after occlusal changes in molars, reached peak levels at 24 h, and was then gradually down-regulated. PBN astrocytes activated by traumatic occlusion were found to have enlarged cell bodies and thickened processes within 8 h. An inhibitor of glia metabolism (FCA, fluorocitrate) reduced astrocyte activation and significantly attenuated the development of pain hypersensitivity in this model. The results suggested that the GFAP-immunoreactive astrocytes in PBN within the bridge of Varolius were activated by traumatic occlusion, and that they were involved in the transmission and modulation of nociceptive information in the central nervous system. However, although astrocytes in PBN are thus probably involved in causing post-occlusal hyperalgesia, we have not been able to exclude that astrocytes at other locations also contribute to this effect. Jinwu Chen and Jun Zhang contributed equally to this study. This study was supported by the National Nature Science Foundation of China (nos. 30400503 and 30572066).  相似文献   

6.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

7.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125-400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

8.
Considerable progress has been made in the use of spin-trapping agents for the trapping of free radicals in biological systems. Radicals have been detected in both in vitro and in vivo systems using this methodology. Free radicals have not only been identified by this procedure, but also the intensity of radical generation and the duration of their production has been assessed as well. One of the most widely used spin-trapping agents in biological systems is PBN. This spin trap appears to be relatively nontoxic at the levels required for successful trapping experiments, but there is no information concerning the possible fate of PBN in such biological systems. Metabolism of PBN could alter the concentration of PBN at the site of trapping which may affect the efficiency of radical capture, especially in in vivo systems. In this study, PBN was administered intraperitoneally to rats and the concentration of the spin trap in various organs was determined by high pressure liquid chromatography as a function of time (15 min to 12 h). The concentration of PBN in plasma peaked at 15 min while the maximum in all organs tested occurred at 30 min. The time course of PBN concentrations in all tissues followed similar curves, and declined rather steeply after the 30-min maximum with a biological half-life of 134 min. However, the amount of PBN per gram of tissue was always higher in liver and kidney than in the brain, heart, and lung. PBN was detected in the urine for as long as 24 h after injection of the compound.  相似文献   

9.
The influence of traumatic shock on some cytogenetic indices in bone marrow cells was investigated in white mongrel rats. The traumatic shock was caused by the Noble-Collip method. Comparative analyses of cytogenetic indices during trauma of different intensity show that the most acute changes involve the percentage of aberrant metaphases, and of average number of chromosome breaks per cell. Dynamics of changes of cytogenetic indices after a heavy trauma show that the traumatic shock may exert a cytogenetic effect maintaining for 18 hours. The results obtained and the analysis of literary data enables us to suggest that the speed of development of changes, and restoration of cytogenetic indices under various forms of trauma is quite different and may serve another confirmation of the hypothesis above the possibility of increasing the process of mutagenesis at the expense of the violation of homeostasis.  相似文献   

10.
《Free radical research》2013,47(3-6):317-323
The objective of this study is using radiolabelled PBN to determine the tissue distribution, excretion, and metabolism of PBN in rats in order to evaluate the effective time to trap free radical in appropriate tissue(s). Our results demonstrated that PBN is rapidly absorbed when it is injected intraperitoneally in the animal. PBN can be used as an effective spin trapping agent for a variety of tissues since it is evenly distributed among a wide range of tissues measured. Since there is no difference in the tissue concentrations and distribution pattern of PBN at 15, 30 and 60min after injection of PBN. it is appropriate to choose any of these time intervals to terminate the experiment and extract the spin adduct. The excretion of PBN, however, is slow. The majority of the radioactivity (70%) was excreted by the first 3 days. Only 5.7% of radioactivity was collected from 3 to 14 days. The remaining 25% of the radioactivity may be in the form of expired 14CO2. Trace amounts of radioactivity were recovered in the feces. PBN has probably only one major form of metabolite excreted in the urine. A small amount of the parent compound, however, was also excreted in the urine. The chemical structure of the metabolite(s) is still unknown.  相似文献   

11.
-Phenyl-N-tert-butyl Nitrone (PBN) is a free radical scavenger which recently has proved to be neuroprotective in experimental studies on focal cerebral ischemia and infarction. We therefore studied the effect of this drug in a model of moderate compression injury to rat spinal cord at the midthoracic level. The compound was given intraperitoneally 0.5 h before (100 mg/kg b.w) and at 1.5 h (50 mg/kg b.w) and 3.5 h (50 mg/kg b.w) after compression. Treated animals and controls (vehicle alone) were allowed to survive for 1 or 9 days following trauma. The functional outcome was tested by the inclined plane method and the motor performance score. By using MAP2 immuno-staining the number of nerve cell bodies in the ventral horn and the ratio of MAP2 immunostained area to area of whole section of the cord were assessed to detect loss of neurons and loss of dendrites in the compressed segment. pAPP and PGP9.5 immunostaining was used to demonstrate axonal lesions.

Treated and control rats showed at day 1 when tested with the inclined plane method a marked reduction of the capacity angle. This abnormality recovered gradually over the following days and was normalized at day 9. The motor performance score showed a marked reduction at day 1 which almost normalized at day 9. There was no difference regarding the functional outcome between rats given PBN and controls in none one of these functional tests.

The spinal cord of normal rats presented immunoreactivity to MAP2 in nerve cell bodies and dendrites but not in axons and other structures. Following compression there was at day 1 and 9 a marked loss of MAP2 immunoreactivity in dendrites and nerve cell bodies. We could not detect any difference between the PBN and the control rats regarding the degree of cell loss or degree of reduction of dendrite staining. No difference between the two groups was seen with the axonal immunostainings (βAPP and PGP9.5).

In conclusion, our study did not reveal any neuroprotective effect of PBN on the functional outcome and morphology (immunostaining to MAP2, pAPP and PGP9.5) in this model of moderate compression trauma to rat spinal cord.  相似文献   

12.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (N = 15.4 and βH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of -phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   

13.
The present study examined the effects of a free radical scavenger, N-tert-butyl-alfa-phenylnitrone (PBN) on lithium-pilocarpine-induced status epilepticus (SE) and its short-term consequences in rats 12 (P12) or 25 (P25) days old. PBN (2 x 100 mg/kg i.p.) was injected according to the following schedules: 1) PBN-pretreated animals received the first dose 30 min prior to pilocarpine, the second dose was given 1 min after SE onset, and 2) PBN-treated animals received the first dose of PBN 1 min after SE onset and the second one 60 min later. Paraldehyde was administered to decrease mortality. Effects of PBN were highly age-dependent. In P25 group, PBN-pretreatment increased latency to SE onset and significantly suppressed the severity of motor manifestation of SE. Both PBN pretreatment and treatment improved recovery after SE. In contrast, administration of PBN in P12 animals did not affect SE pattern or recovery after SE. Administration of PBN had no effects on the motor performance of animals 3 and 6 days after SE. Neuronal damage was examined 24 h and 7 days after SE using Fluoro-Jade B staining. Mild neuroprotective effects of PBN in hippocampal fields CA1 and CA3 occurred in P25 rats in both experimental schedules. In contrast, administration of PBN aggravated neuronal injury in the hippocampus in P12 rats. Administration of PBN to intact rats did not induce neurodegeneration in either age group.  相似文献   

14.
Polymorphonuclear leukocytes (PMNs) have been suggested to be damaged by superoxide radical generated on their own. The protective capacity of a spin trapping compound, phenyl-N-tert-butyl nitrone (PBN) was evaluated for this damage which occurs after the induction of superoxide generation. The life span of PMNs after superoxide generation was measured in the presence of PBN using the cell counting method, and effects of PBN on the amount of superoxide generated were quantitated using both cytochrome c reduction and spin trapping with DMPO. Results indicated significant extension of life span when PBN was present, and the extension was dose dependent. However, the magnitude of life span extension was not as large as expected from the decrease of superoxide generation. Possible mechanisms for the protection of PMNs by PBN are discussed.  相似文献   

15.
Enterococcus faecalis is an intestinal commensal that produces extracellular superoxide (O(2)(*-)) through autoxidation of membrane-associated demethylmenaquinone. To assess free radical production by E. faecalis in vivo, intestinal tracts of rats were colonized using wild-type E. faecalis or a mutant strain with attenuated O(2)(*-) production. Ex vivo electron paramagnetic resonance spin trapping study of colonic contents (mean +/- SD) showed 1.4 +/- 1.5 and 0.094 +/- 0.24 microM 5,5-dimethyl-1-pyrroline-N-oxide-hydroxyl radical adduct/gm stool for rats colonized with wild-type and mutant strains, respectively (p = .002). In vivo hydroxyl radical production was further assayed by aromatic hydroxylation using phenyl N-tert-butylnitrone (PBN) and D-phenylalanine. Hydroxylated PBN and D-phenylalanine products were recovered from stool (microM/gm colonic contents/10(9) colony forming units) and urine (microM/h/ml), respectively, and quantified using electrochemical detection. Hydroxylated (OH) PBNs and isomeric tyrosines (hydroxylated phenylalanine) were significantly increased (mean +/- SD) for rats colonized with wild-type E. faecalis (2-OH PBN, 63 +/- 58; 3-OH PBN, 63 +/- 84; ortho-tyrosine, 31 +/- 27; meta-tyrosine, 17 +/- 14) compared to the mutant strain (2-OH PBN, 2.5 +/- 7.3 (p < .001); 3-OH PBN, 3.9 +/- 12.3 (p = .01); ortho-tyrosine, 1.9 +/- 6.0 (p < .001); meta-tyrosine, 1.5 +/- 3.4 (p = .03)). Similar differences were observed following in vitro incubations of these bacteria with aromatic targets. These results confirm in vivo production of hydroxyl radical by E. faecalis colonizing the intestine, and indicate this bacterium may be a potent source of oxidative stress on the intestinal epithelium.  相似文献   

16.
Phenyl N-tert-butylnitrone (PBN) is widely used as a spin trapping agent, but is not useful detecting hydroxyl radicals because the resulting spin adduct is unstable. However, hydroxyl radicals could attack the phenyl ring to form stable phenolic products with no electron paramagnetic resonance signal, and this possibility was investigated in the present studies. When PBN was added to a Fenton reaction system composed of 25 mM H(2)O(2) and 0.1 mM FeSO(4), 4-hydroxyPBN was the primary product detected, and benzoic acid was a minor product. When the Fe(2+) concentration was increased to 1.0 mM, 4-hydroxyPBN concentrations increased dramatically, and smaller amounts of benzoic acid and 2-hydroxyPBN were also formed. Although PBN is extensively metabolized after administration to animals, its metabolites have not been identified. When PBN was incubated with rat liver microsomes and a reduced nicotinamide adenine dinculeotide phosphate (NADPH)-generating system, 4-hydroxyPBN was the only metabolite detected. When PBN was given to rats, both free and conjugated 4-hydroxyPBN were readily detected in liver extracts, bile, urine, and plasma. Because 4-hydroxyPBN is the major metabolite of PBN and circulates in body fluids, it may contribute to the pharmacological properties of PBN. But 4-hydroxyPBN formation cannot be used to demonstrate hydroxyl radical formation in vivo because of its enzymatic formation.  相似文献   

17.
The objective of this study is using radiolabelled PBN to determine the tissue distribution, excretion, and metabolism of PBN in rats in order to evaluate the effective time to trap free radical in appropriate tissue(s). Our results demonstrated that PBN is rapidly absorbed when it is injected intraperitoneally in the animal. PBN can be used as an effective spin trapping agent for a variety of tissues since it is evenly distributed among a wide range of tissues measured. Since there is no difference in the tissue concentrations and distribution pattern of PBN at 15, 30 and 60min after injection of PBN. it is appropriate to choose any of these time intervals to terminate the experiment and extract the spin adduct. The excretion of PBN, however, is slow. The majority of the radioactivity (70%) was excreted by the first 3 days. Only 5.7% of radioactivity was collected from 3 to 14 days. The remaining 25% of the radioactivity may be in the form of expired 14CO2. Trace amounts of radioactivity were recovered in the feces. PBN has probably only one major form of metabolite excreted in the urine. A small amount of the parent compound, however, was also excreted in the urine. The chemical structure of the metabolite(s) is still unknown.  相似文献   

18.
This study evaluated whether nitric oxide (NO) derived from nitric oxide synthase (NOS) induced by radiation is associated with tumorigenesis in the mammary glands. When rats were exposed to whole-body irradiation with gamma-rays (1.5 Gy) immediately after weaning and then treated with diethylstilbestrol, as an irradiated control, the tumor incidence (85%) was increased 7.6-fold in comparison with that (11.1%) of the non-irradiated control. The tumor incidence declined to 28.6% in the rats injected intraperitoneally with phenyl-N-tert-butylnitrone (PBN, 160 mg/kg), an inhibitor of inducible NOS (iNOS) expression and also a spin trapping agent, 30 min before irradiation. Also, the tumor incidence (25%) in rats orally administered with N-(3-(aminomethyl)-benzyl)-acetamide (1400W, 2.3+/-0.1 mg/day), a highly selective inhibitor of iNOS, dissolved in drinking water for 3 days after the irradiation was less than one-third of that in the irradiated control. On treatment with PBN or 1400W, no adenocarcinoma developed. Many of the mammary tumors that developed in the irradiated rats were positive for the estrogen receptor (ER). In contrast, ER was not detected in the tumors yielded from irradiated rats administered with PBN or 1400W. These results indicate that iNOS-derived NO may participate in the formation of estrogen-dependent mammary adenocarcinomas following radiation.  相似文献   

19.
《Free radical research》2013,47(4):213-222
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

20.
Nimodipine, a new calcium channel blocker, was found to prolong survival in a severely lethal form of traumatic shock in rats. Nimodipine, at infusion rates of 50 μg/kg/h also significantly limited the increase in circulating myocardial depressant factor (MDF) without significantly preventing the accumulation of the lysosomal protease, cathepsin D in the blood. Lower infusion rates were ineffective. Nimodipine did not stabilize lysosomal membranes directly in liver lysosomal suspensions, but was effective in preventing proteolysis in pancreatic homogenates. Nimodipine potentially prevents MDF formation by inhibiting proteases and probably by splanchnic vasodilation. Calcium channel blockers may be useful agents in the therapeutics of traumatic shock if given soon after the onset of the trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号