首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Of the four native nucleosides, 2'-deoxyguanosine (dGuo) is most easily oxidized. Two lesions derived from dGuo are 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy)?dGuo. Furthermore, while steady-state levels of 8-oxodGuo can be detected in genomic DNA, it is also known that 8-oxodGuo is more easily oxidized than dGuo. Thus, 8-oxodGuo is susceptible to further oxidation to form several hyperoxidized dGuo products. This review addresses the structural impact, the mutagenic and genotoxic potential, and biological implications of oxidatively damaged DNA, in particular 8-oxodGuo, Fapy?dGuo, and the hyperoxidized dGuo products.  相似文献   

2.
《Free radical research》2013,47(3):266-275
Abstract

Cholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) after the incubation of 2′-deoxyguanosine (dGuo) with ChOOH and Cu2+. In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation.  相似文献   

3.
Cholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after the incubation of 2'-deoxyguanosine (dGuo) with ChOOH and Cu(2+). In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation.  相似文献   

4.
It is now well established that oxidation of 2'-deoxyguanosine (dGuo) in DNA by singlet molecular oxygen [O2 (1Delta(g))] produces 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), whereas the main degradation products of free dGuo in aqueous solution have been identified as the two diastereomers of spiroiminodihydantoin nucleoside. Interestingly, O2 (1Delta(g))-mediated oxidation of free 8-oxodGuo gives rise to a pattern of degradation products that is different from that observed when the nucleoside is inserted into DNA. The reasons for these differences and the mechanisms involved in the oxidation reactions are not yet completely understood for either dGuo or 8-oxodGuo, either free or within DNA. In the present work, we report a study of the reaction of O2 (1Delta(g)) toward a modified nucleoside, 8-methoxy-2'-deoxyguanosine (8-MeOdGuo), either free or incorporated into an oligonucleotide. The reason for the choice of 8-MeOdGuo as a chemical model to study in more detail the oxidation pathways of 8-oxodGuo or, more precisely, of the tautomeric 8-hydroxy-2'-deoxyguanosine was dictated by the fact that only the 7,8-enolic tautomer is present in the molecule. The thermolysis of an endoperoxide of a naphthalene derivative as a clean chemical source of 18O-labeled O2 (1Delta(g)) was used to oxidize 8-MeOdGuo. The main O2 (1Delta(g)) oxidation products that were separated and analyzed by HPLC coupled to tandem mass spectrometry were identified as the 2'-deoxyribonucleoside derivatives of 2,2,4-triamino-5-(2H)oxazolone, 2,5-diamino-4H-imidazol-4-one together with the methyl-substituted derivatives of spiroiminodihydantoin, oxidized iminoallantoin and urea. On the other hand, O2 (1Delta(g)) oxidation of 8-MeOdGuo-containing oligonucleotide generated imidazolone as the predominant degradation product. These results provided new mechanistic insights into the reactions of O2 (1Delta(g)) with purine nucleosides.  相似文献   

5.

The influence of incubation time and Fenton reagent concentrations was investigated on the oxidation of 2′-deoxyguanosine. The compounds identified and quantified, through use of an LC-MS/MS system, were 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8,5′-cyclo-2′-deoxyguanosine (8,5′cyclodG) and the secondary oxidation products guanidinohydantoin and dehydro-guanidinohydantoin. 8-oxodG and 8,5′cyclodG formed very quickly, reaching a maximum rapidly, but with 8-oxodG a rapid decline occurred thereafter due to its further oxidation into the secondary products, which formed more slowly. Due to the better stability, 8,5′cyclodG correlated better with the general level of oxidation than 8-oxodG. The results emphasize the advantages of measuring other oxidation adducts than 8-oxodG alone.  相似文献   

6.
Employing enhanced chemiluminescence in luminol-p-iodophenol peroxidase system and coumarine-3-carboxylic acid, it was shown that guanosine-5′-monophosphate (GMP) appreciably reduces formation of H2O2 and hydroxyl radicals induced by x-ray irradiation. Using immunoenzyme assay, we revealed that GMP lowered 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) formation in DNA in vitro after irradiation. The results of survival test have shown that mice being injected intraperitoneally with GMP after irradiation with a dose of 7 Gy had better survival rate than the control mice. GMP reduced leucopoenia and thrombocytopenia in irradiated mice. Obtained results give premises that GMP may be promising therapeutic agent for treatment of radiation injuries.  相似文献   

7.
Data concerning the susceptibility of DNA to damage by reactive oxygen and nitrogen species and other endogenous compounds produced by physiological stress in marine organisms is lacking, especially in bivalve mollusks. In this article, we analyzed the background levels of lipid peroxidation (malondialdehyde, MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 1,N2-etheno-2'-deoxyguanosine (1,N2-epsilon dGuo) in digestive gland and mantle tissue of mussels Perna perna collected at a cultivation zone in Florianópolis (Santa Catarina, Brazil). The present data point to the possibility of the use of both 8-oxodGuo and 1,N2-epsilon dGuo as complementary indicators of oxidative stress processes in mussels. A sensitive method coupling high performance liquid chromatography to mass spectrometry was applied for the detection of 1,N2-epsilon dGuo in mussel tissues.  相似文献   

8.
Abstract

A combination of H-phoshonate and phosphoramidite chemistry has been applied for the automated solid-phase synthesis of oligodeoxyribonucleotides containing 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) residues at predefined positions. The unmodified part of the oligomers has been synthesized by using protected standard phosphoramidites, for the incorporation of 8-oxodG the synthon 2-N-acetyl-5′-0-(4,4′-dimethoxytrityl)-7,8-dihydro-2′-deoxyguanosin-8-one-3′-H-phosphonate, prepared in a five step synthesis via 8-bromo-2′-deoxyguanosine, has been used. This approach combines the advantages of both DNA synthesis strategies in that a high yield of full length oligomers is obtained and unreacted, protected 8-oxodG monomers can be recycled, respectively.  相似文献   

9.
GRAPHICAL ABSTRACT

Ozone (O3), a major component of photochemical oxidants, is used recently as a deodorizer in living spaces. It has been reported that O3 can directly react with DNA, causing mutagenesis in human cells and carcinogenesis in mice. However, little is known about the effects of coexistent ions in the reaction of O3. In the present study, we analyzed the effects of halides on the reaction of O3 with nucleosides using reversed-phase high-performance liquid chromatography with ultraviolet detection. When aqueous O3 solution was added to a nucleoside mixture in potassium phosphate buffer (pH 7.3), the nucleosides were consumed with the following decreasing order of importance: dGuo > Thd > dCyd > dAdo. The effects of addition of fluoride and chloride in the system were slight. Bromide suppressed the reactions of dGuo, Thd, and dAdo but enhanced the reaction of dCyd. The major products were 5-hydroxy-2′-deoxycytidine, 5-bromo-2′-deoxycytidine, and 8-bromo-2′-deoxyguanosine. The time course and pH dependence of the product yield indicated formation of hypobromous acid as the reactive agent. Iodide suppressed all the reactions effectively. The results suggest that bromide may alter the mutation spectrum by O3 in humans.  相似文献   

10.
In the present study, we used the method involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in human urine. The mean levels of 8-oxoGua and 8-oxodGuo in the urine samples of the subjects on unrestricted diet were respectively 1.87 nmol/kg 24 h (±0.90) and 0.83 nmol/kg 24h (±0.49), and in the case of the groups studied, they did not depend on the applied diet. The sum of the amounts of both compounds in urine can give information about the formation rate of 8-oxoGua in cellular DNA. It is also likely that the levels of modified nucleo-base/side in urine sample are reflective of the involvement of different repair pathways responsible for the removal of 8-oxodGuo from DNA, namely base excision repair (BER) and nucleotide excision repair (NER).  相似文献   

11.
Abstract

Oligodeoxynucleotides containing the two 5′R and 5′S diastereoisomers of 5′,8-cyclo-2′-deoxyadenosine (CyclodAdo) and 5′,8-cyclo-2′-deoxyguanosine (CyclodGuo) have been synthesized using the phosphoramidite chemistry. The structural assignment and a few biochemical features of these modified DNA fragments are reported.  相似文献   

12.
Abstract

A single step chemical synthesis of N7-methyl-2′-deoxyguanosine (m7dG), N1-methyl-2′-deoxyguanosine (m1dG) and O6-methyl-2′-deoxyguanosine (m6dG) is described. The products were separated on the silical gel plates and characterized by nuclear magnetic resonance and mass spectrometry.  相似文献   

13.
14.
Abstract

The impact of classic cardiovascular risk factors on oxidative stress status in a high-risk cardiovascular Mediterranean population of 527 subjects was estimated. Oxidative stress markers (malondialdehyde, 8-oxo-7′8′-dihydro-2′-deoxyguanosine, oxidized/reduced glutathione ratio) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) were analysed in circulating mononuclear blood cells. Malondialdehyde, oxidized glutathione and the ratio of oxidized to reduced glutathione were significantly higher while catalase and glutathione peroxidase activities were significantly lower in high cardiovascular risk participants than in controls. Statistically significant differences were obtained after additional multivariate control for sex, age, obesity, diabetes, lipids and medications. Among the main cardiovascular risk factors, hypertension was the strongest determinant of oxidative stress in high risk subjects studied at a primary prevention stage.  相似文献   

15.
A highly sensitive quantitative method based on LC-MS/MS was developed to simultaneously and directly measure 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) in urine. It was found that 8-oxoGua could be artifactually generated from 8-oxodGuo during the ionization process by both in-source thermolysis and collisionally induced dissociation. Our method applied a two-stage wash procedure in the online solid-phase extraction system that not only eliminated ion suppression but also prevented artifactual interference with 8-oxoGua by 8-oxodGuo by eluting the analytes individually. With the use of isotope internal standards, the detection limits of 8-oxoGua and 8-oxodGuo were estimated to be 30 and 3.5 fmol, respectively. The 8-oxoGua stability under common storage conditions was first investigated. Dissolved 8-oxoGua in NaOH (pH 12) was quite fragile and stable for only < 1 day at room temperature. When pH and temperature were reduced, the 8-oxoGua stability at ? 20°C was significantly increased to ~ 87 days in water (pH ~ 7) and ~ 112 days when diluted in 5% methanol. This method was further applied to measure urinary samples of healthy subjects. A molar ratio of 8-oxoGua to 8-oxodGuo of ~ 4.6 was found, supporting the hypothesis that oxidatively damaged DNA is primarily repaired by the base excision repair pathway.  相似文献   

16.
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 μg?l?1) and ferric iron (20 and 40 mg?l?1), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose–response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose–effect relationships and synergistic effects were not observed.  相似文献   

17.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

18.
《Free radical research》2013,47(5):369-380
Reaction of nitric oxide with superoxide anion produces the highly reactive species peroxynitrite (ONOO?). This compound has been shown to be a strong oxidant of lipids and proteins. However, no data are available on its effect on DNA, with the exception of the induction of strand breaks. We report the result of studies on the reactions of peroxynitrite with the adenine and guanine moieties of nucleosides and isolated DNA. The samples were analyzed for 8-oxo-7,8-dihydro-2′-deoxyguano-sine (8-oxo-dGuo), 2,2-diamino-4–[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5–(2H)-oxazolone (oxazolone) and 8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxo-dAdo). The effects of peroxynitrite treatment were compared with those of ionizing radiation in aerated aqueous solution, chosen as a source of hydroxyl radicals. At the nucleoside level, both oxidizing conditions led to the formation of oxazolone and 8-oxo-dAdo. In addition, evidence was provided for the formation of the 4R* and 4S* diastereoisomers of 4-hydroxy-8-oxo-4,8-dihydro-2′-deoxyguanosine. The latter dGuo oxidation products were chosen as markers of the release of singlet oxygen (1O2) upon reaction of peroxynitrous acid with hydrogen peroxide. Oxidation of purine bases was then studied within isolated DNA. A significant increase in the level of 8-oxp-dGuo, oxazolone and 8-oxo-dAdo was observed within double stranded DNA upon exposure to γ-radiation. Oxazolone and 8-oxo-dAdo were formed upon peroxynitrite treatment but no significant increase in the amount of 8-oxo-dGuo was detected. These results showed that peroxynitrite exhibits oxidizing properties toward purine moieties both in nucleosides and isolated DNA. However, the significant differences in the oxidative damage distribution within DNA observed after exposure to γ radiation by comparison with peroxynitrite treatment questions the involvement of hydroxyl radicals as the main oxidizing species released by decomposition of peroxynitrous acid.  相似文献   

19.
S(IV) (SO(2),HSO(3)(-)andSO(3)(2-)) autoxidation catalyzed by Cu(II)/tetraglycine complexes in the presence of DNA or 2'-deoxyguanosine (dGuo) resulted in DNA strand breaks and formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. Ni(II), Co(II) or Mn(II) (1.0x10(-4)M) complexes had much smaller effects. Cu(II)/tetraglycine (1.0x10(-4)M) in the presence of Ni(II) or Mn(II) (10(-7)-10(-6)M) and S(IV) showed remarkable synergistic effect with these metal ions producing a higher yield of 8-oxodGuo. Oxidation of dGuo and DNA damage were attributed to oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by transition metal ions. SO*(3)(-) and HO* radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline-N-oxide).  相似文献   

20.
The rodent carcinogens dimethylcarbamyl chloride (DMCC) and diethylcarbamyl chloride (DECC) react with dGuo (pH 7.0–7.5, 37°C, 4 h) to form the O6-acyl derivatives 6-dimethylcarbamyloxy-2′-deoxyguanosine (6-DMC-dGuo) and 6-diethylcarbamyloxy-2′-deoxyguanosine (6-DEC-dGuo), respectively. Reaction of DMCC with dThd under identical conditions yielded 4-dimethylamino-thymidine (4-DMA-dThd). Compounds 6-DMC-dGuo and 6-DEC-dGuo undergo a nucleophilic aromatic substitution reaction with dimethylamine (DMA) to form 6-dimethylamino-2′-deoxyguanosine (6-DMA-dGuo) via displacement of the C-6 dialkylcarbamyloxy moiety. The substitution reaction did not take place when diethylamine or NH3 were substituted for DMA. The structures of the new compounds 6-DMC-dGuo, 6-DEC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were deduced from chemical analyses and syntheses, UV and nuclear magnetic resonance (NMR) spectra and electron impact, isobutane chemical ionization and source insertion isobutane chemical ionization mass spectra. It was postulated that 4-DMA-dThd was formed following reaction of the transient intermediate 4-DMC-dThd with DMA formed by hydrolysis of DMCC. Calf thymus DNA was reacted in vitro with DMCC (pH 7.0–7.5, 37°C, 4 h) and the modified DNA hydrolyzed enzymatically to 2′-deoxynucleosides. Compounds 6-DMC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were identified in the hydrolysate by high-pressure liquid chromatography (HPLC). In an indentical manner 6-DEC-dGuo was identified following in vitro reaction of DECC with calf thymus DNA. Compounds 6-DEC-dGuo and 6-DMC-dGuo possess novel structures with respect to the types of adducts known to be formed between carcinogens and bases in DNA. The implications of these findings with respect to chemical mutagenesis and carcinogenesis is discussed. The structural relationship between N4-dimethyl-5-methylcytosine (4-dimethylamino-Thy) formed in DNA following in vitro reaction with DMCC and 5-methylcytosine, the only modified base found in vertebrate DNA is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号