首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of various stresses were examined on the accumulation of mRNA for microsomal heme oxygenase and a heat shock protein, hsp70, in three human hepatoma cell lines. By heat shock, hsp70 mRNA was induced in all three hepatoma lines, Hep G2, Hep 3B and Hep G2f, while heme oxygenase mRNA was increased only in Hep 3B. Time-courses of the heat shock induction of both mRNAs in Hep 3B were similar. Arsenite caused induction of both mRNAs in all three cell lines, while cadmium increased them in Hep G2 and Hep 3B, but not in Hep G2f cells. These findings suggest that, although both hsp70 and heme oxygenase are heat shock proteins, the mode of induction of mRNAs for these proteins is different.  相似文献   

2.
The expression and subcellular localization of cellular heat-shock protein hsp70 were examined in varicella-zoster virus (VZV)-infected human diploid fibroblasts. Infection with VZV elevated the steady-state levels of hsp70 mRNA by 24 hr post-infection (hpi). Western blotting analysis revealed an increase in accumulation of hsp70 from 24 hpi. Subcellular localization of the hsp70 in VZV-infected cells was examined by indirect immunofluorescence. In most VZV-infected cells, hsp70 was localized to inclusion bodies induced in the cell nucleus by infection with VZV. In some cells, however, the remaining parts of the cell nucleus and the cytoplasm were also stained with anti-hsp70 antibody. These results indicate that infection with VZV induces the expression of hsp70 and its localization to VZV-specific inclusion bodies, which suggests the involvement of hsp70 in molecular events within inclusion bodies.  相似文献   

3.
M-14 human melanoma cells, following severe hyperthermic exposures, synthesized a heat-shock protein of 66 kDa (hsp 66), in addition to the major “classic” heat-shock proteins. This hsp 66 was not expressed following mild hyperthermic exposures sufficient to trigger the synthesis of the other heat-shock proteins. The induction of hsp 66 was observed also in Li human glioma cells treated at 45°C for 20 min. By contrast, hsp 66 was not induced in seven other human cell lines (both melanoma and nonmelanoma) when they were subjected to the same hyperthermic treatment. Immunological recognition experiments showed that hsp 66 cross-reacted with the inducible hsp 72, but not with the constitutive hsp 73. The possibility that hsp 66 is a breakdown product of hsp 72 was ruled out by the fact that Poly(A)+ RNA extracted from cells treated at 45°C for 20 min was able to direct the synthesis of hsp 66 (together with hsp 72) in a message-dependent rabbit reticulocyte lysate, as well as in microinjected Xenopus oocytes. By contrast, only the hsp 72 was expressed using Poly(A)+ RNA extracted from cells heated at 42°C for 1 h. Affinity chromatography experiments on ATP-agarose showed that hsp 66 did not bind ATP in vitro, hsp 66 was localized both in the cytoplasm (cytosol, mitochondria, and microsome fraction) and in the nuclei of cells recovered from a severe heat shock: this intracellular distribution closely corresponded to that of hsp 72. The nuclear-associated hsp 66 was found to be tightly bound to nuclear structures and could not be extracted by incubation in ATP-containing buffer. © 1996 Wiley-Liss, Inc.  相似文献   

4.
5.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

6.
Control of hsp70 RNA levels in human lymphocytes   总被引:10,自引:2,他引:8       下载免费PDF全文
The expression of a hsp70 gene in human cells has previously been shown to be related to the growth state of the cells. As an alternative to in vitro synchronization procedures, we have measured steady-state levels of the RNA for a heat-shock protein 70 (hsp70) in human peripheral blood mononuclear cells (PBMC) that are naturally quiescent in a G0 state. The probe used recognized, on RNA blots, one single band. The levels of this hsp70 RNA are elevated in circulating PBMC and decrease when the cells are incubated with serum, or phytohemagglutinin, or simply when they are incubated in culture medium. The levels of hsp70 RNA decrease within 30 min after in vitro culture, and are accompanied by an increase in the levels of c-fos RNA. These findings, together with other recent reports in the literature, suggest a possible role of the hsp70 proteins in the regulation of cell growth.  相似文献   

7.
A Laszlo 《Radiation research》1988,116(3):427-441
The synthesis of the major heat-shock proteins (hsp) was compared in normal and heat-resistant Chinese hamster fibroblasts which express higher levels of the 70 kDa heat-shock protein (hsp70). Following exposure to a variety of experimental conditions that induce the elevated synthesis of the hsp, higher relative levels of hsp70 and lower relative levels of hsp89 and hsp110 were found in the heat-resistant variants. This effect was observed with all inducers tested. The relatively greater synthesis of hsp70 and relatively lower synthesis of hsp89 occurred at all temperatures tested and was found to be independent of cell culture conditions. The relatively greater increase in the levels of hsp70 in the heat-resistant variants after a mild heat shock was found to be a reflection of elevated levels of messenger RNA coding for this polypeptide. These results indicate that the heat-shock response in mammalian cells displays coordinate regulatory features and that the alteration of the expression of one of the hsp may affect the expression of the others.  相似文献   

8.
Involvement of 70-kD heat-shock proteins in peroxisomal import   总被引:11,自引:3,他引:8       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1037-1046
This report describes the involvement of 70-kD heat-shock proteins (hsp70) in the import of proteins into mammalian peroxisomes. Employing a microinjection-based assay (Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Mol. Cell Biol. 12:531-541), we demonstrate that proteins of the hsp70 family were associated with proteins being imported into the peroxisomal matrix. Import of peroxisomal proteins could be inhibited by coinjection of antibodies directed against the constitutive hsp70 proteins (hsp73). In a permeabilized-cell assay (Wendland and Subramani. 1993. J. Cell Biol. 120:675-685), antibodies directed against hsp70 proteins were shown to inhibit peroxisomal protein import. Inhibition could be overcome by the addition of exogenous hsp70 proteins. Purified rat liver peroxisomes were shown to have associated hsp70 proteins. The amount of associated hsp70 was increased under conditions of peroxisomal proliferation. Furthermore, proteinase protection assays indicated that the hsp70 molecules were located on the outside of the peroxisomal membrane. Finally, the process of heat-shocking cells resulted in a considerable delay in the import of peroxisomal proteins. Taken together, these results indicate that heat-shock proteins of the cytoplasmic hsp70 family are involved in the import of peroxisomal proteins.  相似文献   

9.
We have previously described catecholamine-regulated proteins of molecular masses 47, 40 and 26 kDa (CRP47/40/26). In mammals, these proteins are detected only in brain and have been implicated as playing a role in dopaminergic neurotransmission. In this report, we have cloned the cDNA encoding CRP40 from bovine brain. Analysis of the predicted amino acid sequence revealed that the CRP40 product contains an hsp70 motif and shares homology with heat-shock protein hsp70. Immunolocalization studies using mAbs to dopamine show that it colocalizes with CRP40 in the vesicles of dopaminergic neuroblastoma SH-SY5Y cells. The constitutive expression of CRP40 was increased by exposure to heat shock similar to inducible heat-shock protein hsp70 in SH-SY5Y cells. Dopamine significantly modulated the levels of CRP40, whereas, the expression of hsp70 remained unchanged upon dopamine treatment of these cells. Moreover, CRP40 is able to prevent the thermal aggregation of luciferase in vitro, similar to hsp70, suggesting that CRP40 encodes a dopamine-inducible protein with properties similar to heat-shock proteins. The immunofluorescence analyses show that in SH-SY5Y cells, CRP40 translocates to the nucleus during dopamine-induced apoptosis. These results suggest that CRP40 could play a protective role against the harmful effects of catecholamine metabolites.  相似文献   

10.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

11.
A cell line derived from the tailfin of the marine teleost yellowtail fish Seriola quinqueradiata was established to examine cellular temperature regulation in an ectothermic animal. Three cytosolic members of the HSP70 family, heat-shock cognate proteins HSC70-1, HSC70-2 and heat-shock protein HSP70, were isolated from cultured yellowtail cells as stress-responsive biomarkers. Expression of hsp70 was heat-inducible, in contrast to the hsc70-1 gene product, which was expressed constitutively. In addition, expression of hsc70-2 was only induced under severe heat-shock conditions. Subcellular fractionation and immunocytochemistry showed localization of HSC70/HSP70 in the lysosomes, indicating that chaperone-mediated autophagy is induced by heat shock. Thus, chaperone-mediated autophagy is assisted by HSC70/HSP70, and heat-inducible expression of the genes encoding these proteins may be responsible for survival and adaptation under heat-shock conditions in fish cells.  相似文献   

12.
The heat-shock response in Blastocladiella emersonii is dependent on the developmental stage. Cells exposed to elevated temperatures at different stages of the life cycle (sporulation, germination or growth) show a differential synthesis of heat-shock proteins (hsps). Of a total of 22 polypeptides induced, particular subsets of hsps appear in each phase, demonstrating a non-coordinate heat-shock gene expression. In contrast, heat-shock-related proteins (hsp76, hsp70, hsp39a) are spontaneously expressed at a high level during sporulation. By the criteria of two-dimensional gel electrophoresis and partial proteolysis mapping, the 70,000-Da protein, whose synthesis is induced spontaneously during sporulation, is indistinguishable from the heat-inducible hsp70. The techniques of in vitro translation, and Northern analysis using a Drosophila hsp70 probe, demonstrated that enhanced synthesis of hsp70, which occurs during heat-shock treatment and spontaneously during sporulation, is associated with an accumulation of hsp70 mRNA. These observations suggest that hsp70 gene expression is induced during sporulation.  相似文献   

13.
A monoclonal antibody (13D3) has been developed that recognizes a 71 kilodalton (71 kDa) protein on two-dimensional immunoblots of proteins extracted from a mixture of mouse spermatogenic cells (mainly pachytene spermatocytes and spermatids). This protein was shown by immunoblotting and adenosine triphosphate (ATP)-binding characteristics to be identical to a 71 kDa mouse heat-shock cognate (hsc) protein, hsc71, present in 3T3 cells. Along with a 70 kDa heat-shock inducible protein (hsp70), and a 74 kDa heat-shock cognate protein (hsc74), hsc71 is a product of the mouse HSP70 multigene family. Although antibody 13D3 reacted strongly with hsc71, it reacted only faintly with hsp70 in 3T3 cells, and not at all with hsc74 or a germ cell-specific hsp70-like protein (P70) on immunoblots of mixed germ cells. Antibody 13D3 is unique among known antibodies in its pattern of reaction with these heat-shock proteins. In immunofluorescence studies on isolated germ cells, 13D3 reacted uniformly with the cytoplasm of pachytene spermatocytes, round spermatids, and residual bodies, but only with the midpiece of spermatozoa. Antibody 13D3 recognizes other proteins in addition to hsc71 on two-dimensional immunoblots of condensing spermatids and spermatozoa. Two of the proteins (70 kDa/pI 6.4 and 70 kDa/pI 6.5) were present in condensing spermatids and spermatozoa, and another protein (69 kDa/pI 7.0) was detected only in spermatozoa. The new proteins also were recognized by monoclonal antibody 7.10, which reacts specifically with hsp70, hsc71, hsc74, and P70. Although [35S]methionine was incorporated into the new proteins in condensing spermatids, hsc71, hsc74, and P70 were not labeled. These results suggest that unique heat-shock proteins are synthesized late in spermatogenesis.  相似文献   

14.
We have isolated a cDNA encoding Xenopus laevis (Xl) heat-shock factor 1 (XHSF1). XHSF1, translated from the mRNA synthesized in vitro, will bind specifically to the X1 hsp70 promoter (hsp70). Microinjection of XHSF1 mRNA into Xl oocytes leads to synthesis of XHSF1 which accumulates in the nucleus and selectively activates Xl phsp70p activity at 18°C.  相似文献   

15.
When the body temperature of rats was brought to 42 degrees C, four heat-shock proteins, with molecular weights of 70,000, 71,000, 85,000, and 100,000 (hsp 70, hsp 71, hsp 85, and hsp 100, respectively), were induced in various tissues of the rats. The hsp 70 was strongly induced by hyperthermia, and its accumulation was detected by Coomassie blue staining. The hsp 71 was abundant in various tissues of rats that were not heat-shocked. Analysis of translation products of liver mRNAs from heat-shocked rats also showed increased synthesis of the four heat-shock proteins, indicating that these hsp-mRNAs were induced after hyperthermia. Induction of the hsp-mRNAs was transient after hyperthermia. The four heat-shock proteins produced in various tissues after hyperthermia may be involved in homeostatic control in the heat-shock response of the rat.  相似文献   

16.
After a 60 min heat-shock at 36 degrees C, Xenopus oocytes are still able to accomplish a complete meiotic maturation in response to a progesterone treatment. The 36 degrees C heat-shock applied to maturing oocytes strongly enhances the synthesis of a single heat-shock protein of approx. 70 000 molecular weight (hsp70); after activation with the Ca2+-ionophore A 23187, matured oocytes still display the ability to synthesize hsp70 and to survive a heat-shock. A cycloheximide treatment combined with a heat-shock induces, during the recovery period, the synthesis of two heat-shock proteins, of approx. 70 000 and 83 000 molecular weight.  相似文献   

17.
Heat-shock proteins (hsp) are ubiquitously produced molecules which participate in the protection of cells from environmental perturbation. Moreover, the members of the heat-shock protein 60 (hsp60) and 70 (hsp70) families play an important role in pathogen-host interactions. We studiedin vivo production of the 70-kDa heat-shock proteins in the extract of peritoneal exudate cells (PEC) from mice injected intraperitoneally with an attenuated vaccine strain (LVS) ofFrancisella tularensis. We found a differential production of a highly stress-inducible member of the hsp70 family, designated hsp72, in three inbred strains of mice exhibiting either resistance or susceptibility toF. tularensis LVS infection. Whereas in tularemia-resistant mice hsp72 was even expressed in PEC without injection of bacteria and its production further increased on day 3 and slowly declined on days 5 and 7 after injection, in susceptible mice hsp72 production was highly inducble and restricted only to day 3 afterin vivo infection. Further analysis of hsp72 expression revealed intracellular hsp72 accumulation and its preferential production by peritoneal adherent cells.  相似文献   

18.
In the fungus Blastocladiella emersonii the synthesis of heat-shock proteins is developmentally regulated; particular subsets of heat-shock proteins are induced by heat shock during sporulation, germination and growth and some heat shock-related proteins are spontaneously expressed during sporulation (Bonato et al., 1987, Eur. J. Biochem., in press). Nevertheless, acquisition of thermotolerance can be induced at any stage of the life cycle. The development of thermotolerance is correlated with the enhanced synthesis of some heat-shock proteins: hsp 82a, hsp 82b, hsp 76, hsp 70, hsp 60, hsp 25, hsp 17b. Other hsps are not specifically involved in thermotolerance.  相似文献   

19.
We have isolated two sunflower genes, Ha hsp 18.6 G2 and Ha hsp 17.7 G4, that encode small heat shock proteins (sHSPs). RNAse A protection experiments, carried out with RNA probes transcribed from each gene and hybridized to sunflower total RNA, allowed us to distinguish their mRNA accumulation patterns. In sunflower, Ha hsp 17.7 G4 mRNAs accumulated during zygotic embryogenesis at 25°C. In vegetative tissues, these mRNAs accumulated in response to either heat shock (42°C), abscisic acid (ABA), or mild water stress treatments. In all cases, the mRNAs were transcribed from the same initiation site. In contrast, Ha hsp 18.6 G2 mRNAs accumulated only in response to heat-shock. This result demonstrates differential regulation of these two sHSP genes. The complex regulation depicted by the Ha hsp 17.7 G4 promoter has been further analyzed in transgenic tobacco, using G4::GUS translational fusions. Developmental induction of Ha hsp 17.7 G4 during zygotic embryogenesis was faithfully reproduced in the transgenic plants. 5-distal sequences (between -1132 and -395) were required to confer a preferential spatial expression of GUS activity in the cotyledons. More proximal sequences (from -83 to +163) conferred to the chimeric genes most of the developmental regulation, and the responses to ABA and heat shock characteristic of the Ha hsp 17.7 G4 promoter. The water stress response of this gene was not reproduced in transgenic tobacco and, thus, could be uncoupled from its regulation during embryogenesis.  相似文献   

20.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号