首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms that control the fidelity of DNA replication are discussed. Data are reviewed for 3 steps in a fidelity pathway: nucleotide insertion, exonucleolytic proofreading, and extension from matched and mismatched 3′-primer termini. Fidelity mechanisms that involve predominately Km discrimination, Vmax discrimination, or a combination of the two are analyzed in the context of a simple model for fidelity. Each fidelity step is divided into 2 components, thermodynamics and kinetic. The thermodynamic component, which relates to free-energy differences between right and wrong base pair, is associated with a Km discrimination mechanism for polymerase. The kinetic component, which represents the enzyme's ability to select bases for insertion and excision to achieve fidelity greater than that availablek from base pairing free-energy differences, is associated with a Vmax discrimination mechanism for polymerase. Currently available fidelity data for nucleotide insertion and primer extension in the absence of proofreading appears to have relatively large Km and small Vmax components. An important complication can arise when analyzing data from polymerases containing an associated 3′-exonuclease activity. In the presence of proofreading, a Vmax discrimination mechanisms is likely to occur, but this may be the result of two Km discrimination mechanisms acting serially, one for nucleotide insertion and other for excision. Possible relationships between base pairing free energy differences measured in aqueous solution and those defined within the polymerase active cleft are considered in the context of the enzyme's ability to exclude water, at least partially, from the vicinity of its active site.  相似文献   

2.
Human DNA polymerase eta, the product of the skin cancer susceptibility gene XPV, bypasses UV photoproducts in template DNA that block synthesis by other DNA polymerases. Pol eta lacks an intrinsic proofreading exonuclease and copies DNA with low fidelity, such that pol eta errors could contribute to mutagenesis unless they are corrected. Here we provide evidence that pol eta can compete with other human polymerases during replication of duplex DNA, and in so doing it lowers replication fidelity. However, we show that pol eta has low processivity and extends mismatched primer termini less efficiently than matched termini. These properties could provide an opportunity for extrinsic exonuclease(s) to proofread pol eta-induced replication errors. When we tested this hypothesis during replication in human cell extracts, pol eta-induced replication infidelity was found to be modulated by changing the dNTP concentration and to be enhanced by adding dGMP to a replication reaction. Both effects are classical hallmarks of exonucleolytic proofreading. Thus, pol eta is ideally suited for its role in reducing UV-induced mutagenesis and skin cancer risk, in that its relaxed base selectivity may facilitate efficient bypass of UV photoproducts, while subsequent proofreading by extrinsic exonuclease(s) may reduce its mutagenic potential.  相似文献   

3.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

4.
Accurate DNA replication involves polymerases with high nucleotide selectivity and proofreading activity. We show here why both fidelity mechanisms fail when normally accurate T7 DNA polymerase bypasses the common oxidative lesion 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8oG). The crystal structure of the polymerase with 8oG templating dC insertion shows that the O8 oxygen is tolerated by strong kinking of the DNA template. A model of a corresponding structure with dATP predicts steric and electrostatic clashes that would reduce but not eliminate insertion of dA. The structure of a postinsertional complex shows 8oG(syn).dA (anti) in a Hoogsteen-like base pair at the 3' terminus, and polymerase interactions with the minor groove surface of the mismatch that mimic those with undamaged, matched base pairs. This explains why translesion synthesis is permitted without proofreading of an 8oG.dA mismatch, thus providing insight into the high mutagenic potential of 8oG.  相似文献   

5.
DNA polymerase proofreading is a spell-checking activity that enables DNA polymerases to remove newly made nucleotide incorporation errors from the primer terminus before further primer extension and also prevents translesion synthesis. DNA polymerase proofreading improves replication fidelity ∼ 100-fold, which is required by many organisms to prevent unacceptably high, life threatening mutation loads. DNA polymerase proofreading has been studied by geneticists and biochemists for > 35 years. A historical perspective and the basic features of DNA polymerase proofreading are described here, but the goal of this review is to present recent advances in the elucidation of the proofreading pathway and to describe roles of DNA polymerase proofreading beyond mismatch correction that are also important for maintaining genome stability.  相似文献   

6.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

7.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3′ exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3′ phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3′ exonuclease activity and the 3′ phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

8.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3' exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3' phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3' exonuclease activity and the 3' phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

9.
DNA replication fidelity plays fundamental role in faithful transmission of genetic material during cell division and during transfer of genetic material from parents to progeny. Replicative polymerases are the main guardian responsible for high replication fidelity of genomic DNA. DNA main replicative polymerases are also involved in many DNA repair processes. High fidelity of DNA replication is determined by correct nucleotide selectivity in polymerase active center, and exonucleolytic proofreading that removes mismatches from primer terminus. In this article we will focus on the mechanisms that are responsible for high fidelity of replications with the special emphasis on structural studies showing important conformational changes after substrate binding. We will also stress the importance of hydrogen bonding, base pair geometry, polymerase DNA interactions and the role of accessory proteins in replication fidelity.  相似文献   

10.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

11.
The role of 3' exonuclease excision in DNA polymerization was evaluated in primer extensions using 3' allele-specific primers that had exonuclease-digestible and exonuclease-resistant 3' termini. With exonuclease-digestible unmodified 3' mismatched primers, the exo+ polymerase yielded template-dependent products. Using exonuclease-resistant 3' mismatched primers, no primer-extended product resulted from exo+ polymerase. As a control, polymerase without proofreading activity yielded primer-dependent products from 3' mismatched primers. These data indicated that a successful removal of the mismatch is required for DNA polymerization from the 3' mismatched primers by exo+ polymerase. In addition to the well-known proofreading from this mismatch removal, the premature termination in DNA polymerization, due to the failure of the efficient removal of the mismatched nucleotides, worked as an off-switch in maintaining the high fidelity in DNA replication from exo+ polymerase.  相似文献   

12.
The fidelity of DNA replication by Escherichia coli DNA polymerase I (pol I) was assessed in vivo using a reporter plasmid bearing a ColE1-type origin and an ochre codon in the beta-lactamase gene. We screened 53 single mutants within the region Val(700)-Arg(712) in the polymerase active-site motif A. Only replacement of Ile(709) yielded mutator polymerases, with substitution of Met, Asn, Phe, or Ala increasing the beta-lactamase reversion frequency 5-23-fold. Steady-state kinetic analysis of the I709F polymerase revealed reductions in apparent K(m) values for both insertion of non-complementary nucleotides and extension of mispaired primer termini. Abolishment of the 3'-5' exonuclease activity of wild-type pol I increased mutation frequency 4-fold, whereas the combination of I709F and lack of the 3'-5' exonuclease yielded a 400-fold increase. We conclude that accurate discrimination of the incoming nucleotide at the polymerase domain is more critical than exonucleolytic proofreading for the fidelity of pol I in vivo. Surprisingly, the I709F polymerase enhanced mutagenesis in chromosomal DNA, although the increase was 10-fold less than in plasmid DNA. Our findings indicate the feasibility of obtaining desired mutations by replicating a target gene at a specific locus in a plasmid under continuous selection pressure.  相似文献   

13.
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.  相似文献   

14.
The fidelity of DNA replication relies on three error avoidance mechanisms acting in series: nucleotide selectivity of replicative DNA polymerases, exonucleolytic proofreading, and post-replicative DNA mismatch repair (MMR). MMR defects are well known to be associated with increased cancer incidence. Due to advances in DNA sequencing technologies, the past several years have witnessed a long-predicted discovery of replicative DNA polymerase defects in sporadic and hereditary human cancers. The polymerase mutations preferentially affect conserved amino acid residues in the exonuclease domain and occur in tumors with an extremely high mutation load. Thus, a concept has formed that defective proofreading of replication errors triggers the development of these tumors. Recent studies of the most common DNA polymerase variants, however, suggested that their pathogenicity may be determined by functional alterations other than loss of proofreading. In this review, we summarize our current understanding of the consequences of DNA polymerase mutations in cancers and the mechanisms of their mutator effects. We also discuss likely explanations for a high recurrence of some but not other polymerase variants and new ideas for therapeutic interventions emerging from the mechanistic studies.  相似文献   

15.
The fidelity of DNA synthesis catalyzed by the 180-kDa catalytic subunit (p180) of DNA polymerase alpha from Saccharomyces cerevisiae has been determined. Despite the presence of a 3'----5' exonuclease activity (Brooke et al., 1991, J. Biol. Chem., 266, 3005-3015), its accuracy is similar to several exonuclease-deficient DNA polymerases and much lower than other DNA polymerases that have associated exonucleolytic proofreading activity. Average error rates are 1/9900 and 1/12,000, respectively, for single base-substitution and minus-one nucleotide frameshift errors; the polymerase generates deletions as well. Similar error rates are observed with reactions containing the 180-kDa subunit plus an 86-kDa subunit (p86), or with these two polypeptides plus two additional subunits (p58 and p49) comprising the DNA primase activity required for DNA replication. Finally, addition of yeast replication factor-A (RF-A), a protein preparation that stimulates DNA synthesis and has single-stranded DNA-binding activity, yields a polymerization reaction with 7 polypeptides required for replication, yet fidelity remains low relative to error rates for semiconservative replication. The data suggest that neither exonucleolytic proofreading activity, the beta subunit, the DNA primase subunits nor RF-A contributes substantially to base substitution or frameshift error discrimination by the DNA polymerase alpha catalytic subunit.  相似文献   

16.
Butadiene is a ubiquitous environmental chemical carcinogen that when activated to its monoepoxide intermediate can react with the N3 position of cytosine, resulting in two stereoisomeric adducted bases that rapidly deaminate to N3 2′-deoxyuridine lesions. We have previously shown that replication of DNAs containing these adducts through mammalian cells resulted in 97% mutagenicity, predominantly C to T transitions. Since replicative DNA polymerases were blocked by these lesions in vitro, translesional polymerases were assessed for their ability to bypass these adducts. While polymerases ι, κ and ζ were significantly blocked one nucleotide prior to the lesion, pol η incorporated nucleotides opposite the adducts with a preference for insertion of a G or A. Following polymerase dissociation and reassociation, pol η was also able to extend primers with mispaired termini opposite the lesions, with extensions from the A and T mismatched primer termini being the most efficient. Pol ζ was also able to extend primers containing all mismatched nucleotides opposite the lesions, with the most efficient extension occurring off of the A mismatched primer.  相似文献   

17.
The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer-extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by exo(+) DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.  相似文献   

18.
DNA polymerase eta (Poleta) functions in error-free replication of UV-damaged DNA, and in vitro it efficiently bypasses a cis-syn T-T dimer by incorporating two adenines opposite the lesion. Steady state kinetic studies have shown that both yeast and human Poleta are low-fidelity enzymes, and they misincorporate nucleotides with a frequency of 10(-2)-10(-3) on both undamaged and T-T dimer-containing DNA templates. To better understand the role of Poleta in error-free translesion DNA synthesis, here we examine the ability of Poleta to extend from base mismatches. We find that both yeast and human Poleta extend from mismatched base pairs with a frequency of approximately 10(-3) relative to matched base pairs. In the absence of efficient extension of mismatched primer termini, the ensuing dissociation of Poleta from DNA may favor the excision of mismatched nucleotides by a proofreading exonuclease. Thus, we expect DNA synthesis by Poleta to be more accurate than that predicted from the fidelity of nucleotide incorporation alone.  相似文献   

19.
The DNA polymerase from the bacteriophage T4 is part of a multienzyme complex required for the synthesis of DNA. As a first step in understanding the contributions of individual proteins to the dynamic properties of the complex, e.g., turnover, processivity, and fidelity of replication, the minimal kinetic schemes for the polymerase and exonuclease activities of the gene 43 protein have been determined by pre-steady-state kinetic methods and fit by computer simulation. A DNA primer/template (13/20-mer) was used as substrate; duplexes that contained more single-strand DNA resulted in nonproductive binding of the polymerase. The reaction sequence features an ordered addition of 13/20-mer followed by dATP to the T4 enzyme (dissociation constants of 70 nM and 20 microM) followed by rapid conversion (400 s-1) of the T4.13/20-mer.dATP complex to the T4.14/20-mer.PPi product species. A slow step (2 s-1) following PPi release limits a single turnover, although this step is bypassed in multiple incorporations (13/20-mer-->17/20-mer) which occur at rates > 400 s-1. Competition between correct versus incorrect nucleotides relative to the template strand indicates that the dissociation constants for the incorrect nucleotides are at millimolar values, thus providing evidence that the T4 polymerase, like the T7 but unlike the Klenow fragment polymerases, discriminates by factors > 10(3) against misincorporation in the nucleotide binding step. The exonuclease activity of the T4 enzyme requires an activation step, i.e., T4.DNA-->T4.(DNA)*, whose rate constants reflect whether the 3'-terminus of the primer is matched or mismatched; for matched 13/20-mer the constant is 1 s-1, and for mismatched 13T/20-mer, 5 s-1. Evidence is presented from crossover experiments that this step may represent a melting of the terminus of the duplex, which is followed by rapid exonucleolytic cleavage (100s-1). In the presence of the correct dNTP, primer extension is the rate-limiting step rather than a step involving travel of the duplex between separated exonuclease and polymerase sites. Since the rate constant for 13/20-mer or 13T/20-mer dissociation from the enzyme is 6 or 8 s-1 and competes with that for activation, the exonucleolytic editing by the enzyme alone in a single pass is somewhat inefficient (5 s-1/(8 s-1+5 s-1)), ca. 40%. Consequently, a major role for the accessory proteins may be to slow the rate of enzyme.substrate dissociation, thereby increasing overall fidelity and processivity.  相似文献   

20.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号