首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of plant lectins to modify the interactions of the insulin receptor (IR) and insulin-like growth factor (IGF) receptors (IGFRs) with their ligands was investigated. The lectins profoundly affected the competition-binding curves for (125)I-labelled IGF-I and insulin, causing an increase in the affinity of placental IGF1R and IR towards their ligands. This increment was of such a magnitude that it could affect the receptors' specificity towards these ligands. The lower the ligand concentration, the greater was the lectin-induced affinity shift, which suggests potential physiological significance of the effect. The affinity modulation occurred in a lectin-specific and dose-dependent manner. In contrast to IGF1R and IR, the binding of (125)I-labelled IGF-II to its receptors resisted lectin modulation. Here we provide evidence of the possibility of external modulation of the affinity of placental IGF1R and IR via interactions of the receptors' carbohydrate moieties with lectins. The existence of modulators that would selectively inhibit or enhance the binding of IGFs or insulin to their corresponding receptors may have important implications for placental cell responses to these molecules.  相似文献   

2.
3.
BackgroundInsulin-like growth factor 2 (IGF2), an essential component of the stem cell niche, has been reported to modulate the proliferation and differentiation of stem cells. Previously, a continuous expression of IGF2 in tissues was reported to maintain the self-renewal ability of several types of stem cells. Therefore, in this study, we investigated the expression of IGF2 in adipose tissues and explored the effects of IGF2 on adipose-derived stromal cells (ADSCs) in vitro.MethodsThe expression pattern of IGF2 in rat adipose tissues was determined by gene expression and protein analyses. The effect of IGF2 on proliferation, stemness-related marker expression and adipogenic and osteogenic differentiation was systematically investigated. Furthermore, antagonists of IGF2-specific receptors—namely, BMS-754807 and picropodophyllin—were added to explore the underlying signal transduction mechanisms.ResultsIGF2 levels displayed a tendency to decrease with age in rat adipose tissues. After the addition of IGF2, isolated ADSCs displayed higher proliferation and expression of the stemness-related markers NANOG, OCT4 and SOX2 and greater differentiation potential to adipocytes and osteoblasts. Additionally, both type 1 insulin-like growth factor receptor (IGF-1R) and insulin receptor (IR) participated in the IGF2-mediated promotion of stemness in ADSCs.ConclusionsOur findings indicate that IGF2 could enhance the stemness of rat ADSCs via IGF-1R and IR and may highlight an effective method for the expansion of ADSCs for clinical application.  相似文献   

4.
Kim JG  Kang MJ  Yoon YK  Kim HP  Park J  Song SH  Han SW  Park JW  Kang GH  Kang KW  Oh do Y  Im SA  Bang YJ  Yi EC  Kim TY 《PloS one》2012,7(3):e33322

Background

Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer.

Methodology/Principal Findings

In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity.

Conclusion and Significance

The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells.  相似文献   

5.
We used fluorescence correlation spectroscopy to examine the binding of insulin, insulin-like growth factor 1 (IGF1) and anti-receptor antibodies to insulin receptors (IR) and IGF1 receptors (IGF1R) on individual 2H3 rat basophilic leukemia cells. Experiments revealed two distinct classes of insulin binding sites with K(D) of 0.11 nM and 75 nM, respectively. IGF1 competes with insulin for a portion of the low-affinity insulin binding sites with K(D) of 0.14 nM and for the high-affinity insulin binding sites with K(D) of 10 nM. Dissociation rate constants of insulin and IGF1 were determined to be 0.015 min(-1) and 0.013 min(-1), respectively, allowing estimation of ligand association rate constants. Combined, our results suggest that, in addition to IR and IGF1R homodimers, substantial numbers of hybrid IR-IGF1R heterodimers are present on the surface of these cells.  相似文献   

6.
Insulin and insulin-like growth factor-1 (IGF-1) act on highly homologous receptors, yet in vivo elicit distinct effects on metabolism and growth. To investigate how the insulin and IGF-1 receptors exert specificity in their biological responses, we assessed their role in the regulation of gene expression using three experimental paradigms: 1) preadipocytes before and after differentiation into adipocytes that express both receptors, but at different ratios; 2) insulin receptor (IR) or IGF1R knock-out preadipocytes that only express the complimentary receptor; and 3) IR/IGF1R double knock-out (DKO) cells reconstituted with the IR, IGF1R, or both. In wild-type preadipocytes, which express predominantly IGF1R, microarray analysis revealed ∼500 IGF-1 regulated genes (p < 0.05). The largest of these were confirmed by quantitative PCR, which also revealed that insulin produced a similar effect, but with a smaller magnitude of response. After differentiation, when IR levels increase and IGF1R decrease, insulin became the dominant regulator of each of these genes. Measurement of the 50 most highly regulated genes by quantitative PCR did not reveal a single gene regulated uniquely via the IR or IGF1R using cells expressing exclusively IGF-1 or insulin receptors. Insulin and IGF-1 dose responses from 1 to 100 nm in WT, IRKO, IGFRKO, and DKO cells re-expressing IR, IGF1R, or both showed that insulin and IGF-1 produced effects in proportion to the concentration of ligand and the specific receptor on which they act. Thus, IR and IGF1R act as identical portals to the regulation of gene expression, with differences between insulin and IGF-1 effects due to a modulation of the amplitude of the signal created by the specific ligand-receptor interaction.  相似文献   

7.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands.  相似文献   

8.
Oligomerization of the mannose 6-phosphate/insulin-like growth factor?II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.  相似文献   

9.
B Bhaumick  R M Bala 《Life sciences》1989,44(22):1685-1696
Autophosphorylation of insulin and insulin-like growth factor (IGF)-I receptors were measured in lectin purified receptor preparations from placentas of normal and diabetic patients. The basal and insulin or IGF-I stimulated phosphorylation of the approximately 94 kD protein, corresponding to beta-subunit of the insulin and IGF-I receptors, were approximately 2 times greater (p less than 0.05) in placentas from diabetic patients with poor glycemic control (as judged by their serum HbA1c level) compared to the normals. The magnitude of IGF-I or insulin stimulation of the phosphorylation of the 94 kD protein was comparable in placentas from both diabetic and normal patients. Immunoprecipitation and immunodepletion of IGF-I receptor by alpha-IR3, a monoclonal antibody to IGF-I receptor, revealed the increased basal phosphorylation of the approximately 94 kD protein in placentas of diabetic patients to be associated with IGF-I and insulin receptors. The magnitude of IGF-I and insulin stimulated phosphorylation of the immunoprecipitated and immunodepleted IGF-I receptor, respectively, was the same in both normal and diabetic patients. These results suggested that the increased basal phosphorylation of the 94 kD protein in placentas from diabetic patients may be intrinsic to IGF-I and insulin receptor, however, the regulatory mechanisms effecting the increase may not be dependent on IGF-I or insulin.  相似文献   

10.
We have compared the characteristics of IGF-I and insulin receptors in placentas of normals and insulin dependent diabetic patients. Specific binding of both IGF-I and insulin in placental membranes from patients with good glycemic control (as reflected by blood hemoglobin content) was unaltered while that in the placental membranes from the patients with poor glycemic control was increased to approximately 20% of the normals. This observed small but significant (p less than 0.05) increase in binding of IGF-I and insulin to placental membranes from diabetic patients with poor glycemic control was further magnified, approximately twice (p less than 0.001) the normal, when the membrane receptors were purified by lectin chromatography. The kinetic analysis of IGF-I and insulin binding in both membranes and lectin purified receptors revealed that the increased binding of insulin and IGF-I to the placentas from diabetic patients with poor glycemic control was due to an approximately 2 fold increase (p less than 0.001-0.05) in the receptor numbers without any significant changes of the affinities. The molecular characteristics of the receptors in these diabetic patients, as revealed by the cross-linking studies, did not reveal any changes when compared to the normals. The parallel changes of IGF-I and insulin receptors, shown here, are in accordance with the homologous nature of these two receptors. The increased receptor numbers of these two interrelated hormones in placentas of diabetics with poor glycemic control may be relevant to the altered placental functions in diabetic pregnancy.  相似文献   

11.
Little is known regarding the role of insulin-like growth factor 2 (IGF2) and the regulation of the IGF2 receptor (IGF2R) during follicular development. Granulosa cells were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and were treated with IGF2 for 1-2 days in serum-free medium, and steroid production, cell proliferation, specific (125)I-IGF2 binding, and gene expression were quantified. IGF2 increased both estradiol and progesterone production by granulosa cells, and cells from large follicles were more responsive to the effects of IGF2 than those from small follicles. Abundance of aromatase (CYP19A1) mRNA was stimulated by IGF2 and IGF1. The effective dose (ED(50)) of IGF2 stimulating 50% of the maximal estradiol production was 63 ng/ml for small follicles and 12 ng/ml for large follicles, and these values were not affected by FSH. The ED(50) of IGF2 for progesterone production was 20 ng/ml for both small and large follicles. IGF2 also increased proliferation of granulosa cells by 2- to 3-fold, as determined by increased cell numbers and (3)H-thymidine incorporation into DNA. Treatment with IGF1R antibodies reduced the stimulatory effect of IGF2 and IGF1 on estradiol production and cell proliferation. Specific receptors for (125)I-IGF2 existed in granulosa cells, and 2-day treatment with estradiol, FSH, or cortisol had no significant effect on specific (125)I-IGF2 binding. Also, FSH treatment of small- and large-follicle granulosa cells had no effect on IGF2R mRNA levels, whereas IGF1 decreased IGF2R mRNA and specific (125)I-IGF2 binding. Granulosa cell IGF2R mRNA abundance was 3-fold greater in small than in large follicles. These findings support the hypothesis that both IGF2 and its receptor may play a role in granulosa cell function during follicular development. In particular, increased free IGF1 in developing follicles may decrease synthesis of IGF2R, thereby allowing for more IGF2 to be bioavailable (free) for induction of steroidogenesis and mitogenesis via the IGF1R.  相似文献   

12.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

13.
Insulin-like growth factors (IGFs/somatomedins) have been implicated as regulators of fetal growth. This study investigates whether IGFs are related to macrosomia in infants of normal or insulin-dependent diabetic mothers. Cord concentrations of IGF-I (radioimmunoassay), total IGF (radioreceptor assay) and IGF binding protein (radiobinding assay) were measured in 15 term infants of diabetic mothers (IDM) and 29 term infants of nondiabetic mothers. In infants of control mothers cord IGF and total IGF levels were significantly higher in large-for-gestational-age than appropriate-for-gestational-age infants; but this relationship was lost in IDM, in whom IGF-I concentrations were similar to control infants. IGF binding protein levels were not significantly different in any of these groups. The absence of elevated IGF levels in macrosomic IDM indicates that the pathologic process does not involve a simple increase in these growth factors.  相似文献   

14.
Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R) antibody figitumumab in non-small cell lung cancer (NSCLC) patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR) in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R) and IR47-9 (IR), and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.  相似文献   

15.
The Meg1/Grb10 protein has been implicated as an adapter protein in the signaling pathways from insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) in vitro. To elucidate its in vivo function, four independent Meg1/Grb10 transgenic mouse lines were established, and the effects of excess Meg1/Grb10 on both postnatal growth and glucose metabolism were examined. All of the Meg1/Grb10 transgenic mice showed growth retardation after weaning (3-4 weeks), which indicates that ectopic overexpression of Meg1/Grb10 inhibits postnatal growth that is mediated by IGF1 via IGF1R. In addition, the mice became hyperinsulinemic owing to high levels of insulin resistance, which demonstrates that Meg1/Grb10 also modulates the insulin receptor cascade negatively in vivo. Type II diabetes arose frequently in the two transgenic lines, which also showed impaired glucose tolerance. In these mice, severe atrophy of the pancreatic acinus cells was associated with high-level production of Meg1/Grb10 in the pancreas. These results suggest that Meg1/Grb10 inhibits the function of both insulin and IGF1 receptors in these cells, since a similar phenotype has been reported for Ir and Igf1r double knockout mice. Taken together, these results indicate that Meg1/Grb10 interacts with both insulin and IGF1 receptors in vivo, and negatively regulates the IGF growth pathways via these receptors.  相似文献   

16.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

17.
The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (μIR, μIGF1R, and μhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/μIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors.  相似文献   

18.
Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important.  相似文献   

19.
20.
Insulin-like growth factor binding proteins (IGFBP) can inhibit or accentuate the mitogenic activities of insulin-like growth factor 1 (IGF-1) depending upon the experimental model employed. Inhibitory effects may be attributed to sequestration of IGF-1 onto IGFBP rather than the type I IGF receptor. We have demonstrated that the presence of IGFBP in a simple equilibrium binding assay significantly reduces the total amount of IGF-1 bound to the type I IGF receptor and increases the IC50 for IGF-1 binding. On the basis of such an experiment, performed at equilibrium, IGFBP should reduce the mitogenic activity of IGF-1. Recent work has demonstrated an inverse correlation between the dissociation rate of insulin-like molecules from their receptors and their mitogenic activity. It has also been suggested that the increased rate of dissociation of insulin and IGF-1 from their receptors at increased ligand concentrations serves as a ‘dampening’ mechanism to decrease mitogenic signalling. We have demonstrated increased rates of dissociation of IGF-1 from the type I IGF receptor with increasing concentrations of IGF-1. Furthermore, IGFBP-3 inhibits the acceleration of dissociation rates due to increased IGF-1 levels. Thus, under receptor saturating conditions IGFBP-3 may act to increase mitogenesis by increasing the residence time of individual molecules of IGF-1 upon the type I IGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号