首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
The identification of unbalanced structural chromosome rearrangements using conventional cytogenetic techniques depends on recognition of the unknown material from its banding pattern. Even with optimally banded chromosomes, when large chromosome segments are involved, cytogeneticists may not always be able to determine the origin of extrachromosomal material and supernumerary chromosomes. We report here on the application of comparative genomic hybridization (CGH), a new molecular-cytogenetic assay capable of detecting chromosomal gains and losses, to six clinical samples suspected of harboring unbalanced structural chromosome abnormalities. CGH provided essential information on the nature of the unbalanced aberration investigated in five of the six samples. This approach has proved its ability to resolve complex karyotypes and to provide information when metaphase chromosomes are not available. In cases where metaphase chromosome spreads were available, confirmation of CGH results was easily obtained by fluorescence in situ hybridization (FISH) using specific probes. Thus the combined use of CGH and FISH provided an efficient method for resolving the origin of aberrant chromosomal material unidentified by conventional cytogenetic analysis.  相似文献   

2.
Comparative Genomic Hybridization (CGH) is a molecular cytogenetic analysis that allows identification of genomic changes by comparing the copy number of DNA sequences in cells of tested tissue and the reference specimen. CGH is based on competitive suppressive in situ hybridization of two differently labeled DNA probes (tested and reference, karyotypically normal, fluorochrome-labeled DNAs) with metaphase chromosomes of a healthy subject. First described by Kallioniemi et al. in 1992, the CGH assay has been widely used for identification and characterization of both numerical and structural chromosome abnormalities in cells of different tissues at various pathological conditions in humans, especially in tumor diseases. We discuss the specific features and quality control of comparative genomic hybridization, its advantages and limitations in detection of genomic imbalance and the prospects for development of this technology.  相似文献   

3.
The presence of double minute chromosomes (dmin) in cancer cells is known to be correlated with gene amplifications. In human high grade astrocytomas or glioblastomas, about 50% of cytogenetically characterized cases display dmin. G5 is a cell line which has been established from a human glioblastoma containing multiple dmin. In order to identify the DNA content of these dmin, three techniques were successively used: conventional cytogenetic analysis, comparative genomic hybridization (CGH), and fluorescent in situ hybridization (FISH). The karyotype of G5 cells showed numerical chromosome changes (hypertriploidy), several marker chromosomes, and multiple dmin. CGH experiments detected two strong DNA amplification areas located in 9p21-22 and 9p24, as well as an underrepresentation of chromosomes 6, 10, 11, 13, 14, and 18q. By using FISH with a chromosome 9-specific painting probe to metaphase chromosomes of the G5 cell line, dmin were shown to contain DNA sequences originating from chromosome 9. This study demonstrates the usefulness of a combination of classical karyotyping, CGH, and FISH to identify the chromosomal origin of amplified DNA sequences in dmin. Received: 30 October 1994 / Revised: 25 February 1996  相似文献   

4.
Comparative Genomic Hybridization (CGH) is a molecular cytogenetic method for detecting chromosomal imbalances by comparing the copy number of DNA sequences in cells of tested tissue and the reference specimen. CGH is based on two-color fluorescence suppressive in situ hybridization of genomic test and reference DNAs, each labeled with a different fluorochrome, to metaphase chromosomes of a healthy individual. First described by Kallioniemi et al. in 1992, the CGH assay has been widely used for identification and characterization of both numerical and unbalanced structural chromosome abnormalities in cells of different tissues at various pathological conditions in humans, especially in tumor diseases. We discuss the specific features and quality control of comparative genomic hybridization, its advantages and limitations in detection of genomic imbalance and the prospects for development of this technology.  相似文献   

5.
Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.  相似文献   

6.
In this study, a modified method of the conventional RNA dot-blot hybridization was established, by replacing ~(32)p labels with CY5 labels and replacing nylon membranes with positive-charged glass slides, for detecting plant RNA viruses and a viroid. The modified RNA dot-blot hybridization method was named glass slide hybridization. The optimum efficiency of RNA binding onto the surfaces of activated glass slide was achieved using aminosilane-coated glass slide as a solid matrix and 5×saline sodium citrate (SSC) as a spotting solution. Using a CY5-labeled DNA probe prepared through PCR amplification, the optimized glass slide hybridization could detect as little as 1.71 pg of tobacco mosaic virus (TMV) RNA. The sensitivity of the modified method was four times that of dot-blot hybridization on nylon membrane with a ~(32)P-labeled probe. The absence of false positive within the genus Potyvirus [potato virus A, potato virus Y (PVY) and zucchini yellow mosaic virus] showed that this method was highly specific. Furthermore, potato spindle tuber viroid (PSTVd) was also detected specifically. A test of 40 field potato samples showed that this method was equivalent to the conventional dot-blot hybridization for detecting PVY and PSTVd. To our knowledge, this is the first report of using dot-blot hybridization on glass slides with fluorescent-labeled probes for detecting plant RNA viruses and a viroid.  相似文献   

7.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

8.
9.
Recombinant lambda bacteriophage clone H3 containing a human DNA segment of 14.9 kb present in one or two copies per haploid genome was isolated. In situ hybridization to human metaphase chromosomes of the 3H-labeled cloned DNA resulted in highly significant labeling (53% of cells) of band p36 of chromosome 1, such that 22% of all chromosomal grains were located on this region. Hybridization was dependent upon the presence of dextran sulfate in the hybridization mixture and was not affected by repetitive DNA competitor. These results demonstrate localization of a single copy sequence on human metaphase chromosomes.  相似文献   

10.
In situ DNA/chromosome hybridization techniques were used to localize the cytoplasmic beta-actin gene in the chicken. Hybridization of a beta-actin cDNA probe to metaphase chromosome spreads indicated that sequences complementary to this probe are located on the long arm of chromosome 2 (2q) and one of chromosomes 9 through 12.  相似文献   

11.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

12.
High-resolution comparative hybridization to combed DNA fibers   总被引:5,自引:0,他引:5  
Comparative genomic hybridization (CGH) has proven to be a comprehensive new tool to detect genetic imbalances in genomic DNA. However, the resolution of this method carried out on normal human metaphase spreads is limited to low copy number gains and losses of ≥ 10 Mb. An improved resolution allowing the detection of copy number representations of single genes would strongly enhance the applicability of CGH as a diagnostic and research tool. This goal may be achieved when metaphase chromosomes are replaced by an array of target DNAs representing the genes of interest. To explore the feasibility of such a development in a model system we used cosmid MA2B3, which encompasses about 35 kb in the vicinity of exon 48 of the human dystrophin gene. Linearized cosmid fibers were attached to a glass surface and aligned in parallel by “molecular combing”. Two-color fluorescence in situ suppression hybridization was performed on these cosmid fibers with probe mixtures containing different ratios (ranging from 1:2 to 4:1) of biotin- and digoxigenin-labeled MA2B3 cosmid DNAs. For each mixture fluorescence ratios were determined for 40–50 individual combed DNA molecules. In two series comprising a total of 651 molecules the median fluorescence ratio measurements revealed a linear relationship with the chosen probe ratios. Our study demonstrates that fluorescence ratio measurements on single DNA molecules can be performed successfully. Received: 5 August 1996 / Revised: 30 September 1996  相似文献   

13.
水稻中期染色体和DNA纤维的高效制备技术   总被引:2,自引:0,他引:2  
水稻中期染色体和DNA纤维制备是水稻分子细胞遗传学研究中的关键技术。目前,这两个技术还有很多不足,该研究建立了高效制备水稻中期染色体和DNA纤维的方法。该方法制备的染色体,分裂相多、杂质少、背景清晰、染色体分散且形态好,水稻根尖分生组织细胞的分裂指数高达25%。植物细胞的细胞壁是制备DNA纤维的最大障碍,所以必须先提取细胞核,然后裂解细胞核释放出DNA纤维。在这个研究中,还建立了一个用刀切法分离细胞核,进而用SDS裂解核膜,用载玻片拖出DNA来制备水稻DNA纤维的方法。该方法制备的DNA纤维多呈平行的细线,背景清晰,伸展的程度均匀,适合于原位杂交。  相似文献   

14.
To explore a method for enhancing the immobilization and hybridization efficiency of oligonucleotides on DNA microarrays, conventional protocols of poly‐L‐lysine coating were modified by means of surface chemistry, namely, the slides were prepared by the covalently coupling of poly‐L‐lysine to a glycidoxy‐modified glass surface. The modified slides were then used to print microarrays for the detection of the SARS coronavirus by means of 60mer oligonucleotide probes. The characteristics of the modified slides concerning immobilization efficiency, hybridization dynamics, and probe stripping cycles were determined. The improved surface exhibited high immobilization efficiency, a good quality uniformity, and satisfactory hybridization dynamics. The spotting concentration of 10 μmol/L can meet the requirements of detection; the spots were approximately 170 nm in diameter; the mean fluorescence intensity of the SARS spots were between 3.2 × 104 and 5.0 × 104 after hybridization. Furthermore, the microarrays prepared by this method demonstrated more resistance to consecutive probe stripping cycles. The activated GOPS‐PLL slide could undergo hybridization stripping cycles for at least three cycles, and the highest loss in fluorescence intensity was found to be only 11.9 % after the third hybridization. The modified slides using the above‐mentioned method were superior to those slides treated with conventional approaches, which theoretically agrees with the fact that modification by surface chemistry attaches the DNA covalently firmly to the slides. This protocol may have great promise in the future for application in large‐scale manufacture.  相似文献   

15.
Chaotic mixer improves microarray hybridization   总被引:3,自引:0,他引:3  
Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.  相似文献   

16.
Repetitive DNA sequences were detected directly on somatic metaphase chromosome spreads from soybean root tips using fluorescentin situ hybridization. Methods to spread the forty small metaphase chromosomes substantially free of cellular material were developed using protoplasts. The specific DNA probe was a 1.05 kb internal fragment of a soybean gene encoding the 18S ribosomal RNA subunit. Two methods of incorporating biotin residues into the probe were compared and detection was accomplished with fluorescein-labeled avidin. The rDNA probe exhibits distinct yellow fluorescent signals on only two of the forty metaphase chromosomes that have been counterstained with propidium iodide. This result agrees with our previous analyses of soybean pachytene chromosome [27] showing that only chromosome 13 is closely associated with the nucleolus organizer region. Fluorescentin situ hybridization with the rDNA probe was detected on three of the forty-one metaphase chromosomes in plants that are trisomic for chromosome 13.  相似文献   

17.
The hybridization of 5S and 28S ribosomal RNAs to human fibroblast and leukocyte cells was used as a model system to quantitate the technique of in situ hybridization for human diploid cell types. Quantitation consisted of counting (scoring) the number of grains formed over both interphase nuclei and metaphase chromosomes on slides after various hybridization procedures. The average number of grains/nucleus per slide was then used to determine hybridization percentages. As with nitrocellulose filter hybridizations the kinetics of in situ hybridizations can be fit with a single first-order rate constant. However, the in situ hybridization rate was approximately 10 times slower than the corresponding filter hybridization rate. The efficiency of in situ hybridization was found to range between 5 and 15% for both leukocyte and fibroblast cell types and for both metaphase and interphase nuclei. Determination of the parameters of the in situ hybridization reaction of ribosomal RNAs to diploid chromosomes define the experimental conditions needed for the localization of single copy genes to diploid chromosomes.  相似文献   

18.
The two classical minisatellite probes, 33.6 and 33.15, were used for in situ hybridization to human metaphase chromosomes. Surprisingly, a single major hybridization peak was observed with each probe, respectively at 1q23 for 33.6 and 7q35-q36 for 33.15. Hybridization to human DNA cleaved with "rare-cutter" enzymes and fractionated on pulsed-field gels also showed a fairly simple, largely monomorphic pattern which allows chromosomal assignment using somatic cell hybrids. Differences in hybridization stringency and degree of resolution account for most of the discrepancy between these results and the accepted view of minisatellites, i.e., a large number of unlinked loci spread over the genome. Our results nevertheless indicate the existence of particularly large and homologous loci on a particular chromosome for each of these probes.  相似文献   

19.
This study was carried out to determine if a rapid, simultaneous detection system using chromosome Y- and 1-bearing boar spermatozoa was applicable for sexing embryos. Porcine embryos were recovered from gilts and sows 4 to 6 d after mating, and whole embryos or biopsy cells were mounted on a glass slide with a small amount of fixative (methanol: acetic acid: distilled water = 9:1:4). The samples were then stained by means of a fluorescence in situ hybridization (FISH) procedure developed specifically for the detection of Y-bearing spermatozoa. Hybridization was performed using digoxigenin (dig)-labeled chromosome Y- specific DNA, and biotin-labeled chromosome 1-specific DNA sequences were detected as a signal of FITC and Texas Red on nucleus visualized DAPI-stain. Proportions of whole embryos labeled with chromosome 1-probe were 17 and 97% at the 3 to 16 and > or = 32 cell stage, respectively. Of the 93 biopsied embryos analyzed by FISH, 85 embryos (91%) could be accurately classified as male or female. Of the 65 biopsied embryos, 60 embryos (92%) had a clear blastocoele and a inner cell mass after 48 h of culture in vitro, and these embryos were evaluated as available embryos. One out of 4 recipient gilts which received sexed embryos at transfer farrowed 12 piglets of the expected sex. The results of this study demonstrated that porcine embryos at the > or = 32 cell stage can be sexed within 2 h using the FISH method. Moreover further development of the FISH technique could make it an effective tool for the study of early porcine embryos and for the control of porcine sex.  相似文献   

20.
The combination of array-based comparative genomic hybridization (CGH) with fluorescence in situ hybridization utilizing custom-designed bacterial artificial chromosome (BAC) probes applied to tissue microarrays represents a powerful compendium of techniques–greatly enhancing the throughput of genomic analysis and subsequent target validation. Such approach can be automated at various levels and allows managing large volume of targets and samples in a few experiments. As such, this approach facilitates discovery, validation and implementation of findings in the process of identification of new diagnostic, prognostic and potentially therapeutic molecular markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号