首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cigarette smoke causes irreversible oxidations in lungs, but its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Here the effect of cigarette smoke exposure in mice was investigated on the covalent binding of glutathione to protein thiols, known as S-glutathionylation (PSSG), which can be reversed by glutaredoxins (Grx). Also, protein S-nitrosylation (PSNO) which is the modification of protein thiols by NO and which is reversed by the enzyme alcohol dehydrogenase (ADH) 5 was examined. Both PSSG and PSNO levels in lung tissue were markedly decreased after 4 weeks of cigarette smoke exposure. This coincided with attenuated protein free thiol levels and increased protein carbonylation. The expression of NOX4, DHE sensitive oxidant production and iNOS levels were induced by smoke, whereas Grx1 mRNA expression and activity were attenuated. Free GSH levels, protein expression and activity of ADH5 were unaffected by smoke. Taken together, smoke exposure decreases reversible cysteine oxidations PSSG and PSNO and enhances protein carbonylation. These alterations are not associated with differences in some of the regulatory enzymes, but are likely the result of oxidative stress.  相似文献   

2.
3.
Cigarette smoke, a complex mixture of over 7000 chemicals, contains many components capable of eliciting oxidative stress, which may induce smoking-related disorders, including oral cavity diseases. In this study, we investigated the effects of whole (mainstream) cigarette smoke on human gingival fibroblasts (HGFs). Cells were exposed to various puffs (0.5-12) of whole cigarette smoke and oxidative stress was assessed by 2',7'-dichlorofluorescein fluorescence. The extent of protein carbonylation was determined by use of 2,4-dinitrophenylhydrazine with both immunocytochemical and Western immunoblotting assays. Cigarette smoke-induced protein carbonylation exhibited a puff-dependent increase. The main carbonylated proteins were identified by means of two-dimensional electrophoresis and MALDI-TOF mass spectrometry (redox proteomics). We demonstrated that exposure of HGFs to cigarette smoke decreased cellular protein thiols and rapidly depleted intracellular glutathione (GSH), with a minimal increase in the intracellular levels of glutathione disulfide and S-glutathionylated proteins, as well as total glutathione levels. Mass spectrometric analyses showed that total GSH consumption is due to the export by the cells of GSH-acrolein and GSH-crotonaldehyde adducts. GSH depletion could be a mechanism for cigarette smoke-induced cytotoxicity and could be correlated with the reduced reparative and regenerative activity of gingival and periodontal tissues previously reported in smokers.  相似文献   

4.
Our recent in vitro results [4] indicate that cigarette smoke induces oxidation of human plasma proteins and extensive oxidative degradation of the guinea pig lung, heart, and liver microsomal proteins, which is almost completely prevented by ascorbic acid. In this paper, we substantiate the in vitro results with in vivo observations. We demonstrate that exposure of subclinical or marginal vitamin C-deficient guinea pigs to cigarette smoke causes oxidation of plasma proteins as well as extensive oxidative degradation of the lung microsomal proteins. Cigarette smoke exposure also results in some discernible damage of the heart microsomal proteins. The oxidative damage has been manifested by SDS-PAGE, accumulation of carbonyl and bityrosine, as well as loss of tryptophan and protein thiols. Cigarette smoke exposure also induces peroxidation of microsomal lipids as evidenced by the formation of conjugated dienes, malondialdehyde, and fluorescent pigment. Cigarette smoke-induced oxidative damage of proteins and peroxidation of lipids are accompanied by marked drop in the tissue ascorbate levels. Protein damage and lipid peroxidation are also observed in cigarette smoke-exposed pair-fed guinea pigs receiving 5 mg vitamin C/animal/day. However, complete protection against protein damage and lipid peroxidation occurs when the guinea pigs are fed 15 mg vitamin C/animal/day. Also, the cigarette smoke-induced oxidative damage of proteins and lipid is reversed after discontinuation of cigarette smoke exposure accompanied by ascorbate therapy. The results, if extrapolated to humans, indicate that comparatively large doses of vitamin C may protect the smokers from cigarette smoke-induced oxidative damage and associated degenerative diseases.  相似文献   

5.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

6.

Background

Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects.

Methods

A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed.

Results

Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure.

Conclusions

Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation.  相似文献   

7.
Reversible oxidations of protein thiols have emerged as alternatives to free radical-mediated oxidative damage with which to consider the impacts of oxidative stress on cellular activities but the scope and pathways of such oxidations in tissues, including the brain, have yet to be fully defined. We report here a characterization of reversible oxidations of glutathione and protein thiols in extracts from rat brains, from two sources, which had been (1) frozen quickly after euthanasia to preserve in vivo redox states and (2) subjected to alkylation upon tissue disruption to trap reduced thiols. Brains were defined, relatively, as Reduced and Moderately Oxidized based on measured ratios of reduced (GSH) to oxidized (GSSG) glutathione. Levels of protein disulfides formed by the cross-linking of closely-spaced (vicinal) protein thiols, but not protein S-glutathionylation, were higher in extracts from the Moderately Oxidized brains compared to the Reduced brains. Moreover, the oxidized vicinal thiol proteome contains proteins that impact cellular energetics, signaling, neurotransmission, and cytoskeletal dynamics among others. These findings argue that kinetically-competent pathways for reversible, two-electron oxidations, of protein vicinal thiols can be activated in healthy brains in response to physiological oxidative stresses. We propose that such oxidations may link oxidative stress to adaptive, but also potentially deleterious, changes in neural cell activities in otherwise healthy brains.  相似文献   

8.
Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo.  相似文献   

9.
10.
Cigarette smoke exposure is associated with increased risk of various diseases. Epithelial cells-mediated innate immune responses to infectious pathogens are compromised by cigarette smoke. Although many studies have established that cigarette smoke exposure affects the expression of Toll-liked receptor (TLR), it remains unknown whether the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) expression is affected by cigarette smoke exposure. In the study, we investigated effects of cigarette smoke extract (CSE) on NOD1 signaling in an immortalized human oral mucosal epithelial (Leuk-1) cell line. We first found that CSE inhibited NOD1 expression in a dose-dependent manner. Moreover, CSE modulated the expression of other crucial molecules in NOD1 signaling and human β defensin (hBD) 1, 2 and 3. We found that RNA interference-induced Caspase-12 silencing increased NOD1 and phospho-NF-κB (p-NF-κB) expression and down-regulated RIP2 expression. The inhibitory effects of CSE on NOD1 signaling can be attenuated partially through Caspase-12 silencing. Intriguingly, Caspase-12 silencing abrogated inhibitory effects of CSE on hBD1, 3 expression and augmented induced effect of CSE on hBD2 expression. Caspase-12 could play a vital role in the inhibitory effects of cigarette smoke on NOD1 signaling and hBDs expression in oral mucosal epithelial cells.  相似文献   

11.
Cigarette smoke is associated with increased carotid intimal thickening or stroke. Preliminary work showed that exposure to smoke resulted in a 4.5-fold reduction of heat shock protein-70 (HSP70) expression in spleens of mice using gene microarray analysis. In the current study, we investigated the role of extracellular HSP70 in carotid intimal thickening of mice exposed to cigarette smoke. Intimal thickening was induced by placement of a cuff around the right carotid artery of mice. Cuff injury resulted in increased HSP70 mRNA expression in carotid arteries that persisted for 21 days. Cigarette smoke exposure decreased arterial HSP70 expression and significantly increased intimal thickening compared with mice exposed to air. Treatment of mice exposed to cigarette smoke with intravenous recombinant HSP70 attenuated intimal thickening through reduced phosphorylated extracellular signal-regulated kinase (pERK) expression in the arterial wall. In vitro experiments with rat aortic smooth muscle cells confirmed that recombinant HSP70 decreases pERK and proliferating cell nuclear antigen (PCNA) expression in cells exposed to cigarette smoke extract and H(2)O(2). Our study suggests that decreased expression of arterial HSP70 is an important mechanism by which exposure to cigarette smoke augments intimal thickening. The effects of recombinant HSP70 suggest a role for extracellular HSP70.  相似文献   

12.
13.
目的研究烟草烟雾暴露对支气管哮喘(简称哮喘)大鼠气道chemokine receptor 6(CCR6)表达的影响,探讨吸烟加重哮喘气道炎症的免疫学机制。方法雄性Wistar大鼠40只,随机分为对照组、烟雾暴露组、哮喘组和哮喘+烟雾暴露组,每组10只。建立哮喘大鼠模型和哮喘大鼠烟草烟雾暴露模型,采集大鼠支气管肺泡灌洗液(BALF)行白细胞计数及分类,采用逆转录-聚合酶链式反应(RT-PCR)方法及免疫组织化学法检测各组大鼠气道CCR6 mRNA及蛋白的表达。结果①哮喘组(69.0±3.5;4.1±1.0;8.9±2.0)、哮喘+烟雾暴露组(86.7±5.2;2.2±1.0;19.0±2.8)BALF中白细胞总数、嗜酸粒细胞、中性粒细胞均高于对照组(10.1±3.8;1.3±0.7;2.2±1.1)、烟雾暴露组(47.7±6.8;0.5±0.3;2.7±1.4)(P均〈0.05);哮喘+烟雾暴露组BALF中白细胞总数和中性粒细胞高于哮喘组,嗜酸粒细胞低于哮喘组(P均〈0.05)。②哮喘组(8.15±0.88;0.452±0.013)、哮喘+烟雾暴露组(15.16±0.87;0.531±0.024)CCR6 mRNA及其蛋白表达水平均明显高于对照组(1.01±0.52;0.299±0.027)、烟雾暴露组(5.55±0.54;0.442±0.018)(均P〈0.01);哮喘+烟雾暴露组明显高于哮喘组(均P〈0.01)。结论烟草烟雾暴露可通过促使气道CCR6 mRNA及其蛋白高表达,加重哮喘大鼠气道慢性炎症。  相似文献   

14.
The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. Pulmonary arterial pressures were measured. Intrapulmonary artery structure was analyzed by morphometry, artery mediator protein expression by immunohistochemistry, and artery mediator gene expression by laser capture microdissection and real-time RT-PCR. We found that the smoke-exposed animals developed increases in pulmonary arterial pressure and increased muscularization of the small pulmonary arteries. Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.  相似文献   

15.
Cigarette smoking is associated with peptic ulcer diseases. Smokers have lower levels of salivary epidermal growth factor (EGF) than nonsmokers. We investigated whether reduction of EGF is involved in the delay of gastric ulcer healing by cigarette smoking. Rats with acetic acid-induced ulcers were exposed to cigarette smoke (0, 2, or 4% vol/vol) 1 day after ulcer induction. EGF level was elevated 1 day after ulcer induction in salivary glands and serum, and 4 days after ulcer induction in the gastric mucosa. However, cigarette smoke depressed these beneficial effects and EGF mRNA expression in salivary glands and gastric mucosa. Cigarette smoke delayed gastric ulcer healing and reduced cell proliferation, angiogenesis, and mucus synthesis. Exogenous EGF (10 and 20 microg/kg i.v.) before smoke exposure reversed the adverse effects of cigarette smoke, whereas vascular endothelial growth factor level and nitric oxide synthase activity were unaffected. It is concluded that the detrimental effect of cigarette smoke on ulcer healing is a consequence of reduction of angiogenesis, cell proliferation, and mucus secretion through the depressive action on EGF biosynthesis and its mRNA expression in salivary glands and gastric mucosa.  相似文献   

16.
Exposure of isolated rat hepatocytes to allyl alcohol (AA), diethyl maleate (DEM) and bromoisovalerylurea (BIU) induced lipid peroxidation, depletion of free protein thiols to about 50% of the control value and cell death. Vitamin E completely prevented lipid peroxidation, protein thiol depletion and cell death. A low concentration (0.1 mM) of the lipophylic disulfide, disulfiram (DSF), also prevented the induction of lipid peroxidation by the hepatotoxins; however, in the presence of DSF, protein thiol depletion and cell death occurred more rapidly. Incubation of cells with a high concentration (10 mM) of DSF alone led to 100% depletion of protein thiols and cell death, which could not be prevented by vitamin E. The level of free protein thiols in cells, decreased to 50% by exposure to AA, DEM and BIU, could be reversed to 75% of the initial level by dithiothreitol (DTT) treatment, indicating that the protein thiols were partially modified into disulfides and partially into other, stable thiol adducts. The 100% depletion of protein thiols by DSF was completely reversed by DTT treatment. The involvement of lipid peroxidation in protein thiol depletion was studied by measuring the effect of a lipid peroxidation product, 4-hydroxynonenal (4-HNE), on protein thiols in a cell free liver fraction. 4-HNE did not induce lipid peroxidation in this system, but protein thiols were depleted to 30% of the initial value, irrespective of the presence of vitamin E. DTT treatment could reverse this for only 25%. Similar, DSF-induced protein thiol depletion could be reversed completely by DTT. We conclude that (at least) two types of protein thiol modifications can occur after exposure of hepatocytes to toxic compounds: one due to interaction of endogeneously generated lipid peroxidation products with protein thiols, which is not reversible by the action of DTT, and one due to a disulfide interchange between disulfides like DSF and protein thiols, which can be reversed by the action of DTT.  相似文献   

17.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

18.
Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.  相似文献   

19.
Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β(2)-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1.  相似文献   

20.
The aim of this study was to investigate the histological and biochemical changes in liver of rats exposed to cigarette smoke and effects of caffeic acid phenetyl ester (CAPE) on these changes. For this purpose, 21 male Wistar rats were divided into three groups. Animals in Group I were used as control. Rats in Group II were exposed to cigarette smoke and rats in Group III were exposed to cigarette smoke and injected daily with CAPE. At the end of the 60-days experimental period, all rats were killed by decapitation and blood samples were obtained. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin levels and hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px ), malondialdehyde (MDA) contents were determined. Following routine histological procedures, liver tissue specimens were examined under a light microscope. The levels of ALT, AST, total bilirubin, SOD, GSH-Px and MDA were significantly increased in rats exposed to cigarette smoke compared with those of the controls. Light microscopic examination of liver specimens from rats exposed to cigarette smoke revealed mononuclear cell infiltration and that some of the hepatocytes had a hyperchromatic nucleus and enlarged sinusoids. The rats which were treated with CAPE along with cigarettes had partially attenuated histological changes associated with cigarette exposure. In conclusion, the damage inflicted by cigarette in the rat liver can be partially prevented by CAPE administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号