首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cingulin (CGN) and paracingulin (CGNL1) are structurally related proteins that regulate Rho family GTPases by recruiting guanine nucleotide exchange factors to epithelial junctions. Although the subcellular localization of cingulin and paracingulin is likely to be essential for their role as adaptor proteins, nothing is known on their in vivo localization, and their dynamics of exchange with the junctional membrane. To address these questions, we generated stable clones of MDCK cells expressing fluorescently tagged cingulin and paracingulin. By FRAP analysis, cingulin and paracingulin show a very similar dynamic behaviour, with recovery curves and mobile fractions that are distinct from ZO-1, and indicate a rapid exchange with a cytosolic pool. Interestingly, only paracingulin, but not cingulin, is peripherally localized in isolated cells, requires the integrity of the microtubule cytoskeleton to be stably anchored to junctions, and associates with E-cadherin. In contrast, both proteins require the integrity of the actin cytoskeleton to maintain their junctional localization. Although cingulin and paracingulin form a complex and can interact in vitro, the junctional recruitment and the dynamics of membrane exchange of paracingulin is independent of cingulin, and vice-versa. In summary, cingulin and paracingulin show a similar dynamic behaviour, but partially distinct localizations and functional interactions with the cytoskeleton, and are recruited independently to junctions.  相似文献   

2.
Paracingulin is a 160-kDa protein localized in the cytoplasmic region of epithelial tight and adherens junctions, where it regulates RhoA and Rac1 activities by interacting with guanine nucleotide exchange factors. Here, we investigate the molecular mechanisms that control the recruitment of paracingulin to cell-cell junctions. We show that paracingulin forms a complex with the tight junction protein ZO-1, and the globular head domain of paracingulin interacts directly with ZO-1 through an N-terminal region containing a conserved ZIM (ZO-1-Interaction-Motif) sequence. Recruitment of paracingulin to cadherin-based cell-cell junctions in Rat1 fibroblasts requires the ZIM-containing region, whereas in epithelial cells removal of this region decreases the junctional localization of paracingulin at tight junctions but not at adherens junctions. Depletion of ZO-1, but not ZO-2, reduces paracingulin accumulation at tight junctions. A yeast two-hybrid screen identifies both ZO-1 and the adherens junction protein PLEKHA7 as paracingulin-binding proteins. Paracingulin forms a complex with PLEKHA7 and its interacting partner p120ctn, and the globular head domain of paracingulin interacts directly with a central region of PLEKHA7. Depletion of PLEKHA7 from Madin-Darby canine kidney cells results in the loss of junctional localization of paracingulin and a decrease in its expression. In summary, we characterize ZO-1 and PLEKHA7 as paracingulin-interacting proteins that are involved in its recruitment to epithelial tight and adherens junctions, respectively.  相似文献   

3.
Paracingulin is an M(r) 150-160 kDa cytoplasmic protein of vertebrate epithelial tight and adherens junctions and comprises globular head, coiled-coil rod, and globular tail domains. Unlike its homologous tight junction protein cingulin, paracingulin has been implicated in the control of junction assembly and has been localized at extrajunctional sites in association with actin filaments. Here we analyze the role of paracingulin domains, and specific regions within the head and rod domains, in the function and localization of paracingulin by inducible overexpression of exogenous proteins in epithelial Madin Darby canine kidney (MDCK) cells and by expression of mutated and chimeric constructs in Rat1 fibroblasts and MDCK cells. The overexpression of the rod + tail domains of paracingulin perturbs the development of the tight junction barrier and Rac1 activation during junction assembly by the calcium switch, indicating that regulation of junction assembly by paracingulin is mediated by these domains. Conversely, only constructs containing the head domain target to junctions in MDCK cells and Rat1 fibroblasts. Furthermore, expression of chimeric cingulin and paracingulin constructs in Rat1 fibroblasts and MDCK cells identifies specific sequences within the head and rod domains of paracingulin as critical for targeting to actin filaments and regulation of junction assembly, respectively. In summary, we characterize the functionally important domains of paracingulin that distinguish it from cingulin.  相似文献   

4.
5.
6.
《Molecular membrane biology》2013,30(7-8):427-444
Abstract

Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

7.
Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.  相似文献   

8.
This review is focused on the composition and organization of the junctional subsarcolemmal cytoskeleton of adult muscle fibers. The cytoskeleton of muscle fibers is organized in functionally distinct compartments and the subsarcolemmal cytoskeleton itself can be broadly divided into junctional (myotendinous junction, neuromuscular junction and costameres) and non-junctional domains. In junctional zones three different multimolecular cytoskeletal complexes coexist: the focal adhesion-type, the spectrin-based and the dystrophin vs utrophin-based membrane skeleton systems. These complexes extend over several levels, from intracytoplasmic to subsarcolemmal and transmembranous; their common feature is the anchorage of actin filaments emanating from the intracytoplasmic level. The different cytoskeletal proteins, their putative roles and their interactions with various signaling pathways are presented here in detail. The subsarcolemmal cytoskeleton complexes are thought to play distinct physiological roles (membrane stabilization, force transmission to extracellular matrix, ionic channel anchorage, etc) but their colocalization on the three sarcolemmal junctional domains strongly suggests interrelated or common functions.  相似文献   

9.
The functional characteristics of the tight junction protein ZO-3 were explored through exogenous expression of mutant protein constructs in MDCK cells. Expression of the amino-terminal, PSD95/dlg/ZO-1 domain-containing half of the molecule (NZO-3) delayed the assembly of both tight and adherens junctions induced by calcium switch treatment or brief exposure to the actin-disrupting drug cytochalasin D. Junction formation was monitored by transepithelial resistance measurements and localization of junction-specific proteins by immunofluorescence. The tight junction components ZO-1, ZO-2, endogenous ZO-3, and occludin were mislocalized during the early stages of tight junction assembly. Similarly, the adherens junction proteins E-cadherin and beta-catenin were also delayed in their recruitment to the cell membrane, and NZO-3 expression had striking effects on actin cytoskeleton dynamics. NZO-3 expression did not alter expression levels of ZO-1, ZO-2, endogenous ZO-3, occludin, or E-cadherin; however, the amount of Triton X-100-soluble, signaling-active beta-catenin was increased in NZO-3-expressing cells during junction assembly. In vitro binding experiments showed that ZO-1 and actin preferentially bind to NZO-3, whereas both NZO-3 and the carboxy-terminal half of the molecule (CZO-3) contain binding sites for occludin and cingulin. We hypothesize that NZO-3 exerts its dominant-negative effects via a mechanism involving the actin cytoskeleton, ZO-1, and/or beta-catenin.  相似文献   

10.
Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions.  相似文献   

11.
Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, β-catenin and α-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.  相似文献   

12.
We characterized the sequence and protein interactions of cingulin, an M(r) 140-160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1-439) and tail (1,326-1,368) domains and a central alpha-helical rod domain (440-1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH(2)-terminal fragment of cingulin (1-378) interacts in vitro with ZO-1 (K(d) approximately 5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377-1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH(2)-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton.  相似文献   

13.
14.
Endothelial cells lining the vessel wall are connected by adherens, tight and gap junctions. These junctional complexes are related to those found at epithelial junctions but with notable changes in terms of specific molecules and organization. Endothelial junctional proteins play important roles in tissue integrity but also in vascular permeability, leukocyte extravasation and angiogenesis. In this review, we will focus on specific mechanisms of endothelial tight and adherens junctions.  相似文献   

15.
16.
17.
Vectorial transport in the thyroid epithelium requires an efficient barrier against passive paracellular flux, a role which is principally performed by the tight junction (zonula occludens). There is increasing evidence that tight junction integrity is determined by integral and peripheral membrane proteins which interact with the cell cytoskeleton. Although the contribution of the actin cytoskeleton to tight junction physiology has been intensively studied, less is known about possible interactions with microtubules. In the present study we used electrophysiological and immunohistochemical approaches to investigate the contribution of microtubules to the paracellular barrier in cultured thyroid cell monolayers which displayed a high transepithelial electrical resistance (6000-9000 ohm · cm2). Colchicine (1 μM) caused a progressive fall in electrical resistance to <10% of baseline after 6 h and depolarization of the transepithelial electrical potential difference consistent with a significant increase in paracellular permeability. The effect of colchicine on TER was not affected by agents which inhibit the major apical conductances of thyroid cells but was reversed upon removal of the drug. Immunofluorescent staining for tubulin combined with confocal laser scanning microscopy demonstrated that thyroid cells possessed a dense microtubule network extending throughout the cytoplasm which was destroyed by colchicine. Colchicine also produced changes in the localization of the tight junction-associated protein, ZO-1: its normally continuous junctional distribution was disrupted by striking discontinuities and the appearance of many fine strands which extended into the cytoplasm. A similar disruption in E-cadherin staining was also observed, but colchicine did not affect the distribution of vinculin associated with adherens junctions nor the integrity of the perijunctional actin ring. We conclude that microtubules are necessary for the functional and structural integrity of tight junctions in this electrically tight, transporting epithelium.  相似文献   

18.
Junctional adhesion molecule (JAM) is an integral membrane protein that has been reported to colocalize with the tight junction molecules occludin, ZO-1, and cingulin. However, evidence for the association of JAM with these molecules is missing. Transfection of Chinese hamster ovary cells with JAM (either alone or in combination with occludin) resulted in enhanced junctional localization of both endogenous ZO-1 and cotransfected occludin. Additionally, JAM was coprecipitated with ZO-1 in the detergent-insoluble fraction of Caco-2 epithelial cells. A putative PDZ-binding motif at the cytoplasmic carboxyl terminus of JAM was required for mediating the interaction of JAM with ZO-1, as assessed by in vitro binding and coprecipitation experiments. JAM was also coprecipitated with cingulin, another cytoplasmic component of tight junctions, and this association required the amino-terminal globular head of cingulin. Taken together, these data indicate that JAM is a component of the multiprotein complex of tight junctions, which may facilitate junction assembly.  相似文献   

19.
20.
颜昊  霍正浩 《生命科学》2007,19(2):184-188
紧密连接(tight junction,TJ)是脊椎动物细胞间连接的一种主要形式,对介导上皮细胞间的黏合、维持上皮细胞的功能具有重要作用。TJ是由一系列跨膜蛋白和外周蛋白相互作用而形成的一个复杂的蛋白质体系,封闭蛋白(occludin)是构成TJ的主要成分之一。目前,已发现封闭蛋白与许多人类疾病有关。本文仅就封闭蛋白的结构、功能及其与人类疾病的关系做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号