首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   

2.
Mummery RS  Mulloy B  Rider CC 《Glycobiology》2007,17(10):1094-1103
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.  相似文献   

3.
A new assay was developed to measure the N-deacetylase activity of the glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs), which are key enzymes in sulfation of heparan sulfate (HS)/heparin. The assay is based on the recognition of NDST-generated N-unsubstituted glucosamine units in Escherichia coli K5 capsular polysaccharide or in HSs by monoclonal antibody JM-403. Substrate specificity and potential product inhibition of the NDST isoforms 1 and 2 were analyzed by comparing lysates of human 293 kidney cells stably transfected with mouse NDST-1 or -2. We found HSs to be excellent substrates for both NDST enzymes. Both NDST-1 and -2 N-deacetylate heparan sulfate from human aorta ( approximately 0.6 sulfate groups/disaccharide) with comparable high efficiency, apparent Km values of 0.35 and 0.76 microM (calculation based on [HexA]) being lower (representing a higher affinity) than those for K5 polysaccharide (13.3 and 4.7 microM, respectively). Comparison of various HS preparations and the unsulfated K5 polysaccharide as substrates indicate that both NDST-1 and -2 can differentially N-sulfate polysaccharides already modified to some extent by various other enzymes involved in HS/heparin synthesis. Both enzymes were equally inhibited by N-sulfated sequences (>or=6 sugar residues) present in N-sulfated K5, N-deacetylated N-resulfated HS, and heparin. Our primary findings were confirmed in the conventional N-deacetylase assay measuring the release of 3H-acetate of radiolabeled K5 or HS as substrates. We furthermore showed that NDST N-deacetylase activity in crude cell/tissue lysates can be partially blocked by endogenous HS/heparin. We speculate that in HS biosynthesis, some NDST variants initiate HS modification/sulfation reactions, whereas other (or the same) NDST isoforms later on fill in or extend already modified HS sequences.  相似文献   

4.
The mitogenic activity of acidic fibroblast growth factor (aFGF) is potentiated by the highly sulfated hexasaccharide [IdoUA,2S-GlcNS,6S]2-[GlcUA-GlcNS,6S] the structural repetitive unit of lung heparin chains. On a mass basis, the effect of both heparin and oligosaccharide are equivalent whereas on a molar basis, heparin, which contains about seven hexasaccharide repeats, is more efficient. On the other hand, a pentasulfated tetrasaccharide or di- and trisulfated disaccharides are much less effective in potentiating aFGF activity than the hexasaccharide. If the growth factor is pre-incubated with the hexasaccharide at pH 7.2 and then exposed to pH 3.5 the 306/345 nm fluoresence ratio is similar to that of native aFGF indicating that the oligosaccharide stabilizes a native conformation of the protein. Heparan sulfates extracted from various mammalian tissues were also able to potentiate aFGF mitogenic activity. On a mass basis they were in general less efficient than heparin; however, heparan sulfate prepared from medium conditioned by 3T3 fibroblasts is more efficient than heparin both on a mass and molar basis. A highly sulfated oligosaccharide isolated after digestion of pancreas heparan sulfate with heparitinase I is more active than the intact molecule, reaching a potentiating effect equivalent to that of lung heparin, whereas an N-acetylated oligosaccharide isolated after nitrous acid degradation is inactive. These data suggest that the mitogenic activity of aFGF is primarily potentiated by interacting with highly sulfated regions of heparan sulfates chains.Abbreviations aFGF,bFGF acidic and basic fibroblast growth factor - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - U,2S-(14)-GlcNS,6S O--L-ido(ene-pyranosyluronic acid 2-O-sulfate)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - U-(14)-GlcNS,6S O-(ene-pyranosyluronic acid)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - IdoUA iduronic acid - GlcUA glucuronic acid - GlyUA uronic acid; GlcNAcN-acetylglycosamine - GlcNS N-sulfated glucosamine - GlcNS,6S N,6-disulfated glucosamine - Gal galactose - Xyl xylose - Ser serine - HS heparan Sulfate  相似文献   

5.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

6.
7.
Glycosaminoglycans complex with constituents of normal human serum, a finding that was exploited to develop a competitive binding assay for these substances. Heparan sulfate was isolated from renal cortex and radiolabeled with tritiated borohydride. The elution pattern of the radiolabeled material on Sephadex G-25, Bio-Gel P-30, and AG- 1X8 resin was identical to that of unlabeled heparan sulfate. The tritiated heparan sulfate formed radiolabeled precipitates when incubated with serum and zinc acetate. Binding was dose dependent and saturable. Heparin, heparan sulfate, and the chondroitin sulfates, but not hyaluronate or keratan sulfate, competed with the radiolabeled heparan sulfate for binding in a dose-dependent manner. The assay is specific for heparin polysaccharides in chondroitinase ABC-treated samples and is sensitive to microgram quantities.  相似文献   

8.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.  相似文献   

9.
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.  相似文献   

10.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

11.
Heparan sulfate (HS) has been shown to be involved in left-right asymmetry formation, including the process of dextral heart looping during embryonic development. The structural features of HS required in this process, however, have not been explored. In this study, we examined the structure of HS from the heart-forming regions (or heart fields) of Hamburger and Hamilton stage 5-9 chick embryos. No significant differences were found in HS to chondroitin sulfate (CS) ratio, HS chain length, or [35S] sulfate incorporation at HS disaccharide level between the left and the right heart fields. Compared to other parts of the embryo, however, lower ratio of HS to CS, shorter HS chain length, and higher [35S] sulfate incorporation at 6-O position of the glucosamine residue in the HS chains were observed in the heart-forming regions. Moreover, HS from the left and the right heart fields exhibit differential cleavage by heparanase, an endo-beta-d- glucuronidase that cleaves specific sequences within the HS chain. In embryo culture, microinjection of the active human heparanase enzyme into the right but not the left pericardial cavity at stage 7-8+ resulted in reversed heart looping in a dose-dependent manner. Heart reversal following microinjection of heparin or heparin derivatives suggests the involvement of N- and 6-O-sulfation but not 2-O-sulfation in the heart looping process.  相似文献   

12.
The second Ig module (IgII) of the neural cell adhesion molecule (NCAM) is known to bind to the first Ig module (IgI) of NCAM (so-called homophilic binding) and to interact with heparan sulfate and chondroitin sulfate glycoconjugates. We here show by NMR that the heparin and chondroitin sulfate-binding sites (HBS and CBS, respectively) in IgII coincide, and that this site overlaps with the homophilic binding site. Using NMR and surface plasmon resonance (SPR) analyses we demonstrate that interaction between IgII and heparin indeed interferes with the homophilic interaction between IgI and IgII. Accordingly, we show that treatment of cerebellar granule neurons (CGNs) with heparin inhibits NCAM-mediated outgrowth. In contrast, treatment with heparinase III or chondroitinase ABC abrogates NCAM-mediated neurite outgrowth in CGNs emphasizing the importance of the presence of heparan/chondroitin sulfates for proper NCAM function. Finally, a peptide encompassing HBS in IgII, termed the heparin-binding peptide (HBP), is shown to promote neurite outgrowth in CGNs. These observations indicate that neuronal differentiation induced by homophilic NCAM interaction is modulated by interactions with heparan/chondroitin sulfates.  相似文献   

13.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

14.
15.
The glucosaminoglycans isolated from the skin of control and streptozotocin-diabetic rats were fractionated on ion-exchange chromatography into a heparan sulfate (HS)-like and a heparin-like species. In addition, a low sulfated fraction was isolated from the diabetics. The HS and heparin-like fractions isolated from the diabetics (in contrast to the low sulfated fractions) retained high affinity for the acidic (FGF-1) and basic (FGF-2) fibroblast growth factors. In culture, the fractions purified from the control rats and the heparin-like material isolated from the diabetics mediated the biological activity of both FGFs in a dose-dependent manner. By contrast, the diabetic HS-like fractions promoted the biological activity of FGF-2 but not of FGF-1. The results support the idea that the structural motives in HS required for FGF-1 and FGF-2 mediated receptor signalling are different. They may be relevant to the impaired wound healing observed in the disease. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.  相似文献   

17.
Nitric oxide (NO), a reactive nitrogen species, plays an important role in inflammatory lung damage. In the present study, we investigated the role of NO in DNA-binding activity of NF-B in macrophages stimulated with silica or other inflammatory stimulants. Treatment of mouse macrophages (RAW264.7 cells) with a selective inhibitor of inducible nitric oxide synthase (iNOS), L-N6-(1-iminoethyl) lysine (L-NIL), or a nonselective iNOS inhibitor, N-nitro-L-arginine methylester (L-NAME), resulted in inhibition of silica-induced nitric oxide production as well as silica-induced NF-B activation. L-NIL also effectively inhibited NF-B activation induced by other inflammatory stimulants, such as lipopolysaccharide (LPS) or muramyl dipeptide (MDP). These inhibitory effects of L-NIL and L-NAME on silica- or LPS-induced NF-B activation were also observed in primary rat alveolar macrophages. Furthermore, NO generating compounds, such as sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), caused a dose-dependent increase in NF-B activation, which was positively correlated with the level of NO production. Specific inhibitors of protein tyrosine kinase, such as genistein and AG494, prevented NF-B activation in SNP- or SIN-1 treated cells, suggesting involvement of tyrosine kinase in the NO signaling pathway leading to NF-B activation. In contrast, inhibitors of protein kinase C or A, such as staurosporine or H89, had no inhibitory effect on SIN-1 induced NF-B activation. Metalloporphyrins, such as tetrakis (N-methyl-4-pyridyl) porphyrinato iron (III) (Fe-TMPyP) and Zn-TMPyP which are known to alter NO-dependent activity, markedly inhibited silica- and LPS-induced NF-B activation. The results suggest that NF-B activation in macrophages can be induced under certain conditions by nitric oxide and that nitric oxide produced by phagocytes exposed to inflammatory agents may up-regulate the activation of NF-B.  相似文献   

18.
The heparan sulfate proteoglycans that bind and activate antithrombin III (aHSPGs) are synthesized by endothelial cells as well as other nonvascular cells. We determined the amounts of cell surface–associated and soluble aHSPGs generated by the rat fat pad endothelial (RFP) cell line and the fibroblast (LTA) cell line. The RFP cells exhibit higher levels of cell surface–associated aHSPGs as compared to LTA cells, whereas LTA cells release larger amounts of soluble aHSPGs as compared to RFP cells. After confluence RFP cells show an increase in both cell surface–associated and soluble aHSPGs. In contrast, postconfluent LTA cells maintain a constant level of cell surface–associated and soluble aHSPGs. These observations indicate that different cells types can preferentially accumulate aHSPGs as cell surface–associated or soluble forms which could reflect alternate biological functions.  相似文献   

19.
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.  相似文献   

20.
Developmental roles of heparan sulfate proteoglycans in Drosophila   总被引:1,自引:0,他引:1  
The formation of complex patterns in multi-cellular organisms is regulated by a number of signaling pathways. In particular, the Wnt and Hedgehog (Hh) pathways have been identified as critical organizers of pattern in many tissues. Although extensive biochemical and genetic studies have elucidated the central components of the signal transduction pathways regulated by these secreted molecules, we still do not understand fully how they organize gradients of gene activities through field of cells. Studies in Drosophila have implicated a role for heparan sulfate proteoglycans (HSPGs) in regulating the signaling activities and distribution of both Wnt and Hh. Here we review these findings and discuss various models by which HSPGs regulate the distributions of Wnt and Hh morphogens. Published in 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号