首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Radiation frost events, which have become more common in the Mediterranean Basin in recent years, inflict extensive damage to tropical/subtropical fruit crops. During radiation frost, sub-zero temperatures are encountered in the dark, followed by high light during the subsequent clear-sky day. One of the key processes affected by these conditions is photosynthesis, which, when significantly inhibited, leads to the enhanced accumulation of reactive oxygen species (ROS) and damage. The use of ‘chemical priming’ treatments that induce plants' endogenous stress responses is a possible strategy to improve their coping with stress conditions. Herein, we studied the effects of priming with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S), on the response of photosynthesis to overnight frost and day high-light conditions in ‘Hass’ avocado (Persea americana Mill). We found that priming with a single foliar application of NaHS had positive effects on the response of grafted ‘Hass’ plants. Primed plants exhibited significantly reduced inhibition of CO2 assimilation, a lower accumulation of hydrogen peroxide as well as lower photoinhibition, as compared to untreated plants. The ability to maintain a high CO2 assimilation capacity after the frost was attained on the background of considerable inhibition in stomatal conductance. Thus, it was likely related to the lower accumulation of ROS and photodamage observed in primed ‘Hass’ plants. This work contributes toward the understanding of the response of photosynthesis in a subtropical crop species to frost conditions and provides a prospect for chemical priming as a potential practice in orchards during cold winters.  相似文献   

3.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45°C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. A 60-min preincubation of cells at 37°C or pretreatment with low concentrations of H2O2 (0.5 mM) or menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

4.
A temporal increase in temperature triggers a series of stress responses and alters vascular smooth muscle (VSM) contraction induced by agonist stimulation. Here we examined the role of reactive oxygen species (ROS) in heat shock-dependent augmentation of angiotensin II (AngII)-induced VSM contraction. Endothelium-denuded rat aortic rings were treated with heat shock for 45 min at 42 °C and then subjected to assays for the production of force, ROS, and the expression of ROS-related enzymes. AngII-induced contraction was enhanced in heat shock-treated aorta. AngII-induced production of hydrogen peroxide and superoxide were elevated in response to the heat shock treatment. Pre-treatment with superoxide dismutases (SOD) mimetic and inhibitors for glutathione peroxidase and NADPH oxidase but not for xanthine oxidase eliminated an increase in the AngII-induced contraction in the heat shock-treated aorta. Heat shock increased the expression of p47phox, a cytosolic subunit of NADPH oxidase, but not Cu-Zn-SOD and Mn-SOD. In addition, heat shock increased contraction that was evoked by hydrogen peroxide and pyrogallol. These results suggest that heat shock causes an elevation of ROS as well as a sensitization of ROS signal resulting in an augmentation of VSM contraction in response to agonist.  相似文献   

5.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

6.
Vitreoscilla becomes resistant to killing by hydrogen peroxide and heat shock when pretreated with nonlethal levels of hydrogen peroxide. The pretreated Vitreoscilla cells (60 microM hydrogen peroxide for 120 min) significantly increased survival of the lethal dose of 20 mM hydrogen peroxide or heat shock (22 degrees C --> 37 degrees C). This indicates the existence of an adaptive response to oxidative stress. However, cells pretreated with 60 microM hydrogen peroxide became nonresistant to a lethal dose of a menadione. This result shows that hydrogen peroxide does not induce cross-resistance to menadione in Vitreoscilla. Furthermore, Vitreoscilla treated with hydrogen peroxide, heat shock, and menadione showed a change in the protein composition, as monitored by a two-dimensional gel analysis. During adaptation to hydrogen peroxide, 12 proteins were induced. Also, 18 new proteins synthesized in response to heat shock were detected by a 2-D gel analysis. The redox-cycling agents also elicited the synthesis of 6 other proteins that were unseen with hydrogen peroxide.  相似文献   

7.
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2′-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.  相似文献   

8.
The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H2O2, is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H2O2 in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37°C) or by treatment with H2O2, butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H2O2 is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H2O2-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H2O2 is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H2O2 was unable to induce this complex suggesting that H2O2 is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37°C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling. Electronic Supplementary Material Supplementary material is available for this article at http//dx.doi.org/10.1007/s11103-006-0045-4 Roman A. Volkov and Irina I. Panchuk contributed equally  相似文献   

9.
Salmon lice (Lepeophtheirus salmonis) are parasitic copepods, living mainly on Atlantic salmon and leading to large economical losses in aquaculture every year. Due to the emergence of resistances to several drugs, alternative treatments are developed, including treatment with hydrogen peroxide, freshwater or thermal treatment. The present study gives a first overview of the thermotolerance and stress response of salmon lice. Sea lice nauplii acclimated to 10 °C can survive heat shocks up to 30 °C and are capable of hardening by a sublethal heat shock. We searched in the genome for heat shock protein (HSP) encoding genes and tested their inducibility after heat shock, changes in salinity and treatment with hydrogen peroxide, employing microfluidic qPCRs. We assessed 38 candidate genes, belonging to the small HSP, HSP40, HSP70 and HSP90 families. Nine of these genes showed strong induction after a non-lethal heat shock. In contrast, only three and two of these genes were induced after changes in salinity and incubation in hydrogen peroxide, respectively. This work provides the basis for further work on the stress response on the economically important parasite L. salmonis.  相似文献   

10.
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer’s disease.  相似文献   

11.
《Genomics》2021,113(5):3224-3234
Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.  相似文献   

12.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45 degrees C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. The 60-min preincubation of cells at 37 degrees C or pretreatment with low concentrations of H2O2 (0.5 mM) and menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

13.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   

14.
Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought–heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought–heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought–heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme‐specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought–heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.  相似文献   

15.
Extremes of temperature (both heat and chilling) during early inbibitional phase of germination caused disruption of redox-homeostasis by increasing accumulation of reactive oxygen species (superoxide and hydrogen peroxide) and significant reduction of antioxidative defense (assessed in terms of total thiol content and activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in germinating tissues of rice (Oryza sativa L., cultivar Ratna). Imbibitional heat and chilling stress also induced oxidative damage to newly assembled membrane system by aggravating membrane lipid peroxidation and protein oxidation [measured in terms of thiobarbituric acid reactive substances (TBARS), free carbonyl content (C = O groups) and membrane protein thiol level (MPTL)]. Treatment with standardized low titer hydrogen peroxide during early imbibitional phase of germination caused significant reversal in oxidative damages to the newly assembled membrane system imposed by heat and chilling stress [evident from the data of TBARS, C = O, MPTL, ROS accumulation, membrane permeability status, membrane injury index and oxidative stress index] in seedlings of experimental rice cultivar. Imbibitional H2O2 pretreatment also caused up-regulation of antioxidative defense (activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and total thiol content) in the heat and chilling stress-raised rice seedlings. When the parameters of early growth performances were assessed (in terms of relative growth index, biomass accumulation, relative germination performance, mean daily germination, T50 value), it clearly exhibited significant improvement of early growth performances of the experimental rice cultivar. The result proposes that an ‘inductive pulse’ of H2O2 is required to switch on some stress acclimatory metabolism through which plant restores redox homeostasis and prevents or repairs oxidative damages to newly assembled membrane system caused by unfavorable environmental cues during early germination to the rice cultivar Ratna. The importance of mitigating oxidative damages to membrane lipid and protein necessary for post-germinative growth under extremes of temperature is also suggested.  相似文献   

16.
The ameliorating effects of four exogenous effectors were investigated in germinating pea seeds exposed to copper excess. The results showed that the application of IAA, GA3, Ca or citric acid alleviated Cu-induced inhibition of growth and simultaneously reduced the oxidative stress injury, particularly contents of hydrogen peroxide, malondialdehyde and carbonyl groups. The improving effects can probably be mediated by the decreases in lipoperoxidation and protein oxidation as evidenced by changes in antioxidant enzyme activities. In addition, the efficiency of this recovery was compared within two types of treatments. Obtained results demonstrated that the stress abruption by the addition of effectors after three days of Cu application (treatment of type II) seems to be more effective than the simultaneous application of ‘Cu?+?effectors’ at the beginning of germination (treatment of type I). Data could provide some clues to physiological and biochemical mechanisms of the response of germinating seeds to the addition of chemicals under heavy metal stress.  相似文献   

17.
Heat caused reduction in membrane protein thiol content, increased accumulation of thiobarbituric acid reactive substances and reduced germination rate and early growth in germinating Amaranthus lividus seeds. Imposition of heat stress during early germination also causes accumulation of reactive oxygen species like superoxide and hydrogen peroxide while activities of antioxidative enzymes catalase, ascorbate peroxidase, and glutathione reductase decreased. Calcium chelator (EGTA), calcium channel blocker (LaCl3) and calmodulin inhibitor (trifluroperazine) aggravated these effects. Added calcium reversed the effect of heat, implying that protection against heat induced oxidative damage and improvement of germination requires calcium and calmodulin during the recovery phase of post-germination events in Amaranthus lividus.  相似文献   

18.
Hyperglycemia-induced oxidative stress has been suggested as a mechanism underlying diabetic complications. Oxidative stress triggers cell death in various cell types, including glomerular mesangial cells which play important roles in diabetic nephropathy. In the present study, we investigated the potential cytoprotective effect of erigeroflavanone, a novel flavanone derivative from the flowers of Erigeron annuus, in cultured mouse mesangial cells using hydrogen peroxide (H2O2) as an oxidative stress inducer. Our data show that hydrogen peroxide induced a decrease in cell viability that was attenuated by erigeroflavanone. Hydrogen peroxide treatment increased formation of dichlorofluorescein (DCF)-sensitive intracellular reactive oxygen species (ROS). This enhanced ROS formation was significantly reduced by pretreatment with erigeroflavanone in a dose-dependent manner. Hydrogen peroxide treatment also induced phosphorylation of the mitogen-activated protein kinases (MAPKs), c-Jun terminal kinase (JNK), extracellular-regulated kinase (ERK) and p38, and activated caspase-3. Pretreatment with erigeroflavanone inhibited hydrogen peroxide-induced activation of MAPKs and caspase-3. From these data we conclude that erigeroflavanone provides a protective effect against oxidative stress-induced cell death in mesangial cells that is associated with its antioxidant action and inhibition of MAPKs and caspase-3. These results suggest that erigeroflavanone has potential as a therapeutic agent in the treatment of renal diabetic complications.  相似文献   

19.
Recent evidence linking intracellular reactive oxygen species to cell survival and/or proliferation signals has resulted in a paradigm shift from the age-old dogma implicating reactive oxygen species exclusively in cell damage and death. It is now accepted that reactive oxygen species play important roles in normal physiological states and that depending on the species involved the effect could be highly varied. In this regard, the effects of the two major reactive oxygen species, superoxide and hydrogen peroxide have been extensively studied. During normal cell growth a tight balance between the two species is kept under check by the cells' anti-oxidant defense systems. Deficiency or defect in this defense armory is invariably associated with neoplasia, thus rendering the intracellular redox status in a state of imbalance and generating a "pro-oxidant" milieu. A variety of model systems have underscored the relationship between a pro-oxidant state and cancer promotion and progression. In this review, we present evidence to support the hypothesis that the effect of intracellular reactive oxygen species on oncogenesis is dependent on the ratio of intracellular superoxide to hydrogen peroxide in that a predominant increase in superoxide supports cell survival and promotes oncogenesis whereas a tilt in favor of hydrogen peroxide prevents carcinogenesis by facilitating cell death signaling.  相似文献   

20.
Li D  Chen XQ  Li WJ  Yang YH  Wang JZ  Yu AC 《Neurochemical research》2007,32(8):1375-1380
Cytoglobin (Cygb) is a recently discovered intracellular respiratory globin, which exists in all types of cells. It has been suggested that Cygb has a role in protecting cells against oxidative stress. In the present study we have tested this hypothesis. The N2a neuroblastoma cells were exposed to various kinds of insults, including hydrogen peroxide (H2O2), hypoxia, kainic acid, high extracellular CaCl2, high osmolarity, UV irradiation and heat shock. Among them, only H2O2-treatment induced a significant up-regulation of cytoglobin mRNA level. We stably transfected N2a cells with Cygb-siRNA vectors and successfully knocked down Cygb. The Cygb-siRNA could exacerbate cell death upon H2O2-treatment, as demonstrated by MTT cell viability assay. Thus, Cygb in neuronal cells might be specifically induced under oxidative stress to protect them from death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号