首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In distal renal tubular acidosis (dRTA) the tubular secretion of hydrogen ion in the distal nephron is impaired, leading to the development of metabolic acidosis, frequently accompanied by hypokalemia, nephrocalcinosis, and metabolic bone disease. The condition can be familial, when it is usually inherited as an autosomal dominant, though there is a rarer autosomal recessive form associated with nerve deafness. It has been shown that the autosomal dominant form of dRTA is associated with a defect in the anion exchanger (AE1) of the renal collecting duct intercalated cell. This transporter is a product of the same gene (AE1) as the erythrocyte anion exchanger, band 3. In this review we will look at the evidence for this association. Studies of genomic DNA from families with this disorder have shown, both by genetic linkage studies and by DNA sequencing, that affected individuals are heterozygous for mutations in the AE1 gene whilst unaffected family members have a normal band 3 sequence. Mutations have been found in the region of proposed helices 6 and 7 of the membrane domain of band 3 and involve amino acids Arg-589 and Ser-613, and in the COOH-terminal domain of band 3. Studies of red cell band 3 from these families have provided information on the effect these mutations have on the structure and function of erythrocyte band 3. Expression studies of the erythroid and kidney isoforms of the mutant AE1 proteins, in Xenopus laevis oocytes, have shown that they retained chloride transport activity, suggesting that the disease in the dRTA families is not related simply to the anion transport activity of the mutated proteins. A possible explanation for the dominant effect of these mutant AE1 proteins in the kidney cell is that these mutations affect the targeting of AE1 from the basolateral to the apical membrane of the alpha-intercalated cell.  相似文献   

2.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

3.
dRTA (distal renal tubular acidosis) results from the failure of the a-intercalated cells in the distal tubule of the nephron to acidify the urine. A truncated form of AE1 (anion-exchanger 1; Band 3), kAE1 (kidney isoform of AE1), is located in the basolateral membrane of the intercalated cell. Mutations in the AE1 gene cause autosomal dominant and recessive forms of dRTA. All the dominant dRTA mutations investigated cause aberrant trafficking of kAE1, resulting in its intracellular retention or mistargeting to the apical plasma membrane. Therefore the intracellular retention of hetero-oligomers containing wild-type and dRTA mutants, or the mistargeted protein in the apical membrane neutralizing acid secretion, explains dominant dRTA. The kAE1 (Arg(901)-->stop) mutant has been studied in more detail, since the mistargeting kAE1 (Arg(901)-->stop) from the basolateral to the apical membrane is consistent with the removal of a basolateral localization signal. The C-terminal amino acids deleted by the Arg(901)-->stop mutation, contain a tyrosine motif and a type II PDZ interaction domain. The tyrosine residue (Tyr(904)), but not the PDZ domain, is critical for basolateral localization. In the absence of the N-terminus of kAE1, the C-terminus was not sufficient to localize kAE1 to the basolateral membrane. This suggests that a determinant within the kAE1 N-terminus co-operates with the C-terminus for kAE1 basolateral localization. Interestingly, Tyr(359), in the N-terminal domain, and Tyr(904) in the C-terminus of AE1 are phosphorylated in red blood cells. A potential scheme is suggested where successive phosphorylation of these residues is necessary for correct localization and recycling of kAE1 to the basolateral membrane.  相似文献   

4.
5.
Stabilization of the lipid bilayer membrane in red blood cells by its association with an underlying membrane-associated cytoskeleton has long been recognized as critical for proper red blood cell function. One of the principal connections between skeleton and bilayer is via linkages between band 3, the integral membrane protein that transports anions across the cell surface, and membrane skeletal elements including ankyrin, adducin, spectrin, and the junctional complex of the skeleton. Here, we use membrane tether formation coupled with fluorescent labeling of membrane components to examine the importance of band 3 in stabilizing the bilayer-skeletal association. In membranes from a patient deficient in band 3, the energy associated with the bilayer skeleton is approximately zero, whereas when band 3 is immobilized by ligation with the monoclonal antibody R10, the energy of association approximately doubles. Fluorescence images of tethers reveal that ∼40% of the band 3 on the normal cell surface can be pulled into the tether, confirming a lateral segregation of membrane components during tether formation. These results validate a critical role for band 3 in stabilizing the bilayer-skeletal association in red cells.  相似文献   

6.
Three mutations of the membrane-binding region of the Semliki Forest virus (SFV) p62 polypeptide (the precursor for virion E3 and E2) have been made by oligonucleotide-directed mutagenesis of a cDNA clone encoding the SFV structural proteins. One of the mutations (A2) substitutes a Glu for an Ala in the middle of the hydrophobic stretch which spans the bilayer. A1 and A3 alter the two basic charged amino acids in the cytoplasmic domain next to the hydrophobic region. The wild-type charge cluster of Arg-Ser-Lys (+2) has been changed to Gly-Ser-Met (0;A3) or to Gly-Ser-Glu (-1;A1). The mutant p62 proteins have been analyzed both in the presence and the absence of E1, the other half of the heterodimer spike complex of SFV. The mutant proteins expressed in COS-7 cells are glycosylated and are of the expected sizes. When co-expressed with E1, all three mutants are cleaved to yield the E2 protein and transported to the surface of COS-7 cells. When expressed in the absence of E1, the mutant p62 proteins remain uncleaved but still reach the cell surface. Once at the cell surface, all three mutants, when co-expressed with E1, can promote low pH-triggered cell-cell fusion. These results show that the three mutant p62/E2 proteins are still membrane associated in a functionally unaltered way.  相似文献   

7.
Several studies suggest that the Rh complex represents a major interaction site between the membrane lipid bilayer and the red cell skeleton, but little is known about the molecular basis of this interaction. We report here that ankyrin-R is capable of interacting directly with the C-terminal cytoplasmic domain of Rh and RhAG polypeptides. We first show that the primary defect of ankyrin-R in normoblastosis (nb/nb) spherocytosis mutant mice is associated with a sharp reduction of RhAG and Rh polypeptides. Secondly, our flow cytometric analysis of the Triton X-100 extractability of recombinant fusion proteins expressed in erythroleukemic cell lines suggests that the C-terminal cytoplasmic domains of Rh and RhAG are sufficient to mediate interaction with the erythroid membrane skeleton. Using the yeast two-hybrid system, we demonstrate a direct interaction between the cytoplasmic tails of Rh and RhAG and the second repeat domain (D2) of ankyrin-R. This finding is supported by the demonstration that the substitution of Asp-399 in the cytoplasmic tail of RhAG, a mutation associated with the deficiency of the Rh complex in one Rhnull patient, totally impaired interaction with domain D2 of ankyrin-R. These results identify the Rh/RhAG-ankyrin complex as a new interaction site between the red cell membrane and the spectrin-based skeleton, the disruption of which might result in the stomato-spherocytosis typical of Rhnull red cells.  相似文献   

8.
Band 3 proteins, members of the anion exchange family of proteins (AE 0-3), are involved in a number of physiological activities such as cell volume and osmotic homeostasis, HCO3-/Cl- exchange, red cell aging, IgG binding and cellular removal, and the maintenance of the structural integrity of cells. They are present in the membranes of all cells and cellular organelles examined including Golgi, mitochondria and nuclei. The first polymorphisms of band 3 discovered were the asymptomatic band 3 Memphis variants carrying the Lys --> Gly substitution at position 56 in the cytoplasmic tail, and band 3 Texas (high transport band 3 Texas) with a mutation in the critical transmembrane, anion transport domain (Pro --> Leu substitution at position 868). The rate at which band 3 mutations were discovered accelerated in the mid 1990s and there are now over 50 known. The most common polymorphisms of band 3 are the Diego blood group antigens which reside on extracellular loops of the protein. Southeast Asia ovalocytosis (SAO; a nine amino acid deletion of residues 400-408) is a band 3 mutation known only in the heterozygous state in which it does not cause disease. It is thought to confer resistance to malaria by altering red cell deformability. Band 3 mutations are responsible for a subset of the heterogeneous group of disorders known as hereditary spherocytosis (HS). HS is a relatively common congenital or inherited group of anemias characterized by chronic hemolysis and abnormal red cell morphology. Red cells in the subset of HS with band 3 mutations behave like they are band 3 deficient either because the mutant protein is not incorporated into the membrane or because it is not functional. HS can be caused by mutations in any of at least 5 proteins involved in membrane stability. Band 3 mutations are associated with diseases in cells besides erythrocytes. For example, 2 types of distal renal tubular acidosis are the result of band 3 mutations either alone or combined with SAO. Band 3 alterations are implicated in neurological diseases such as familial paroxysmal dyskinesia, idiopathic generalized epilepsies, and neuro- or choreoacanthocytosis although they have not been demonstrated to be causative. Mutations in other genes can cause changes in band 3. An example is sickle cell anemia where the increased oxidation causes accelerated aging of band 3 and increased IgG binding and cellular removal.  相似文献   

9.
10.
The ability of transmembrane receptor proteins to change their association with the cytoskeleton in response to ligand binding seems to be a key mechanism of signal transduction across membranes. To investigate the molecular features of this mechanism we have used the red cell membrane as a model system to study signal transduction through the integral protein, glycophorin A. In these studies the lateral mobility of integral proteins was measured in situ by fluorescence recovery after photobleaching, and membrane rigidity was characterized by micropipette aspiration technique. We found that binding either a monoclonal antibody or its monovalent Fab to the exoplasmic domain of glycophorin A in normal red cells immobilized the receptor and rigidified the membrane. Further, immobilization and rigidification did not occur when antibodies were bound to Miltenberger V cells containing a mutant form of glycophorin A lacking the cytoplasmic domain. These results imply that the site of the immobilization/rigidification lies within the membrane skeletal structure, not in exofacial receptor crosslinking, and requires the extended cytoplasmic domain of normal glycophorin A. In addition, we found that glycophorin A immobilization and membrane skeletal rigidification were accompanied by immobilization of band 3 receptors. This unexpected result indicates a cooperative coupling between liganded glycophorin A, band 3, and the membrane skeleton. We speculate that cooperation of this type may represent a general mechanism for cytoskeletal linkage and transformation initiated by receptors with short cytoplasmic sequences, such as integrins.  相似文献   

11.
The elastic property of red blood cell is supported by interaction between red cell membrane and the intricate cytoskeleton network underlying the membrane bilayer cytoplasmic face. One of the major scaffold protein linkers is band 3-ankyrin complex. Defects occurring in this complex have been found in many inherited diseases, causing red blood cell abnormalities. Here we combined the power of mass spectrometry with conventional biochemical purification methods in order to study the native interactions among band 3, ankyrin and Protein 4.2. This approach provided in vivo evidence for the association between band 3 and N-terminal ankyrin purified directly from the cell membrane. The C-terminal regions of ankyrin were not found to be a stable partner of the band 3 complex. Protein 4.2 was shown here to be an integral part of the complex. Its association to the band 3–ankyrin complex could withstand harsh purification conditions. Our findings lend additional support to the interaction between band 3 and ankyrin N-terminal domain previously shown by in vitro binding assays and provide evidence for a band 3 core complex comprising of band 3, ankyrin and Protein 4.2.  相似文献   

12.
The rotational flexibility of the cytoplasmic domain of band 3, in the region that is proximal to the inner membrane surface, has been investigated using a combination of time-resolved optical anisotropy (TOA) and saturation-transfer electron paramagnetic resonance (ST-EPR) spectroscopies. TOA studies of rotational diffusion of the transmembrane domain of band 3 show a dramatic decrease in residual anisotropy following cleavage of the link with the cytoplasmic domain by trypsin (E. A. Nigg and R. J. Cherry, 1980, Proc. Natl. Acad. Sci. U.S.A. 77:4702-4706). This result is compatible with two independent hypotheses: 1) trypsin cleavage leads to dissociation of large clusters of band 3 that are immobile on the millisecond time scale, or 2) trypsin cleavage leads to release of a constraint to uniaxial rotational diffusion of the transmembrane domain. ST-EPR studies at X- and Q-band microwave frequencies detect rotational diffusion of the transmembrane domain of band 3 about the membrane normal axis of reasonably large amplitude that does not change upon cleavage with trypsin. These ST-EPR results are not consistent with dissociation of clusters of band 3 as a result of cleavage with trypsin. Global analyses of the ST-EPR data using a newly developed algorithm indicate that any constraint to rotational diffusion of the transmembrane domain of band 3 via interactions of the cytoplasmic domain with the membrane skeleton must be sufficiently weak to allow rotational excursions in excess of 32 degrees full-width for a square-well potential. In support of this result, analyses of the TOA data in terms of restricted amplitude uniaxial rotational diffusion models suggest that the membrane-spanning domain of that population of band 3 that is linked to the membrane skeleton is constrained to diffuse in a square-well of approximately 73 degrees full-width. This degree of flexibility may be necessary for providing the unique mechanical properties of the erythrocyte membrane.  相似文献   

13.
Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.  相似文献   

14.
The band 3 protein is the major integral protein present in the erythrocyte membrane. Two tissue-specific isoforms are also expressed in kidney alpha intercalated cells and in cardiomyocytes. It has been suggested that the cardiac isoform predominantly mediates the anion exchange in cardiomyocytes, but the role of the cytoplasmic domain of the band 3 (CDB3) protein in the cardiac tissue is unknown. In order to characterize novel associations of the CDB3 in the cardiac tissue, we performed the two-hybrid assay, using a bait comprising the region from leu 258 to leu 311 of the erythrocyte band 3, which must also be present in the cardiac isoform. The assay revealed two clones containing the C-terminal region of the alpha-cardiac actin. Immunoprecipitation of whole rat heart using an anti-actin antibody, immunoblotted with anti-human band 3, showed that actin binds to band 3 which was confirmed in the reverse assay. The confocal microscopy showed band 3 in the intercalated discs. Thus, besides the in vivo physical interaction in the Saccharomyces cerevisiae cell, we demonstrated using immunopreciptation that there is a physical association of band 3 with alpha-cardiac actin in cardiomyocyte, and we suggest that the binding occur "in situ," in the intercalated disc, a site of cell-cell contact and attachment of the sarcomere to the plasma membrane.  相似文献   

15.
It has long been known that the red blood cell contains a membrane skeleton that stabilizes the plasma membrane, determines its shape, and regulates the lateral distribution of the membrane glyco-proteins to which it is attached. The way in which these functions are regulated in other cells has not been understood. It has now been shown that platelets also contain a membrane skeleton. In contrast to the membrane skeleton of the red blood cell, the platelet membrane skeleton has actin-binding protein, not spectrin, as a major component. The platelet membrane skeleton regulates the same cellular functions as the red blood cell membrane skeleton. Other cells may contain a membrane skeleton that is critical to their viability and normal functioning.  相似文献   

16.
The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase.  相似文献   

17.
The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.  相似文献   

18.
Two isoforms of the band 3 anion exchanger are expressed in mammalian cells, a 911 residue protein (B3) in red cells, and a truncated protein (KB3) in the &#102 -intercalated cells of the kidney. Mutants of both isoforms are known to be associated with human disease, and mistargeting of the mutated proteins has been suggested as the mechanism of pathogenesis in several cases but has been difficult to prove. The present study demonstrates the feasibility of using confocal microscopy for investigating the targeting of homozygous and heterozygous B3 and KB3 mutants. K562 erythroleukemia cells offer several advantages for the stable expression of B3, but have not previously been used for its visualization. A wide range of cell attachment factors, growth conditions, fixation reagents and primary antibodies were investigated to enable imaging of B3 and endogenous GPA by immunofluorescence confocal microscopy in stable K562/B3 clones. B3 co-localized with GPA at the cell surface and also in an intracellular compartment. Functional cell surface expression of KB3 in stable K562 clones was also obtained. Importantly, both B3 and KB3 could be expressed as stable fusion proteins tagged with green fluorescent protein (GFP) in K562 cells, and it was demonstrated that N-terminal GFP-tagging does not affect the targeting or chloride transport properties of B3 or KB3. The use of GFP as well as double-labelling methods developed for immunostaining will be invaluable for investigating the interactions of band 3 with itself and other proteins during its trafficking in erythroid and kidney cells. This will help elucidate how band 3 mutations can cause human diseases such as hereditary spherocytosis and distal renal tubular acidosis.  相似文献   

19.
Two isoforms of the band 3 anion exchanger are expressed in mammalian cells, a 911 residue protein (B3) in red cells, and a truncated protein (KB3) in the alpha-intercalated cells of the kidney. Mutants of both isoforms are known to be associated with human disease, and mistargeting of the mutated proteins has been suggested as the mechanism of pathogenesis in several cases but has been difficult to prove. The present study demonstrates the feasibility of using confocal microscopy for investigating the targeting of homozygous and heterozygous B3 and KB3 mutants. K562 erythroleukemia cells offer several advantages for the stable expression of B3, but have not previously been used for its visualization. A wide range of cell attachment factors, growth conditions, fixation reagents and primary antibodies were investigated to enable imaging of B3 and endogenous GPA by immunofluorescence confocal microscopy in stable K562/B3 clones. B3 co-localized with GPA at the cell surface and also in an intracellular compartment. Functional cell surface expression of KB3 in stable K562 clones was also obtained. Importantly, both B3 and KB3 could be expressed as stable fusion proteins tagged with green fluorescent protein (GFP) in K562 cells, and it was demonstrated that N-terminal GFP-tagging does not affect the targeting or chloride transport properties of B3 or KB3. The use of GFP as well as double-labelling methods developed for immunostaining will be invaluable for investigating the interactions of band 3 with itself and other proteins during its trafficking in erythroid and kidney cells. This will help elucidate how band 3 mutations can cause human diseases such as hereditary spherocytosis and distal renal tubular acidosis.  相似文献   

20.
The N-terminal cytoplasmic domain of the anion exchanger 1 (AE1 or band 3) of the human erythrocyte associates with peripheral membrane proteins to regulate membrane-cytoskeleton interactions, with glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase and aldolase, with the protein-tyrosine kinase p72syk, with hemoglobin and with hemichromes. We have demonstrated that the N-terminal cytoplasmic domain of band 3 (CDB3) is a substrate of the apoptosis executioner caspase 3 (1). CDB3 has two non-conventional caspase 3 cleavage sites, TATD45 and EQGD205 (2). In vitro treatment of recombinant CDB3 with caspase 3 generated two fragments, which could be blocked by pretreatment with the caspase 3 inhibitor Z-DEVD-fmk (3). Recombinant CDB3 in which the caspase 3 cleavage sites Asp45 and Asp205 were mutated, was resistant to proteolysis (4). Proteolytically derived fragments crossreactive with polyclonal anti-band 3 antibody appeared with simultaneous cleavage of poly (ADP-ribose) polymerase and procaspase 3 in staurosporine (STS)-treated HEK293 cells transiently transfected with CDB3 (5). In vivo cleavage of CDB3 could be blocked by pretreatment of cells with Z-DEVD-fmk or in cells transfected with mutant CDB3 (D45A, D205A) (6). Co-transfection experiments showed that STS-mediated cleavage of CDB3 diminished its interaction with the N-terminal domain of protein 4.2, confirming that such cleavage interferes with the interaction of CDB3 with cytoskeletal proteins (7). Active caspase 3 was observed in aged red cells but not in young cells. This red cell caspase 3 could cleave band 3 present in inside-out vesicles prepared from young erythrocytes arguing in favor of a physiological role of caspase 3 in aged erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号