首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
New records of freshwater rotifers (Rotifera) from Indian waters   总被引:1,自引:1,他引:0  
S. S. S. Sarma 《Hydrobiologia》1988,160(3):263-269
This study adds 25 rotifer species to the fauna of India viz.Cyrtonia tuba (Ehrb.)Epiphanes macrourus (Barrois & Daday),Liliferotrocha subtilis (Rodewald),Microcodides chleana (Gosse),Brachionus dimidiatus (Bryce),Keratella ticinensis Carlin,Notholca labis (Gosse),Platyias leloupi (Gillard),Euchlanis incisa Carlin,Mytilina bisulcata (Lucks),Wolga spinifera (Western),Lecane (Lecane)althausi Rudescu,L. (L.)doryssa Harring,L. (L.)elongata Harring & Myers,L. (Monostyla)bifurca (Bryce)L. (M.)lamellata thalera (Harring & Myers),L. (Hemimonostyla)blachei Berzins,Cephalodella giganthea Remane,Monommata arndti Remane,Trichocerca (Trichocerca)pusilla (Lauterborn),Testudinella emarginula (Stenroos),Ptygura melicerta Ehrb,P. tacita Edmondson,Filinia cornuta (Weisse),Collotheca mutabilis (Hudson),C. ornata (Ehrb.) andC. trilobata (Collins).B. dimidiatus andP. leloupi are new records from Delhi Region.  相似文献   

3.
为了合理利用和保护天敌进行卵形短须螨、双斑长跗萤叶甲和假眼小绿叶蝉的综合防治,用灰色系统分析方法和生态位分析法对合肥地区白毫早茶园3种主要害虫与其捕食性天敌在数量、时间、空间等方面关系进行分析,利用害虫与天敌关系密切指数之和综合评判9种天敌与3种害虫关系密切的前四位天敌。2015年卵形短须螨的前四位天敌是鳞纹肖蛸(5.3079)、三突花蟹蛛(5.1716)、锥腹肖蛸(4.8367)和草间小黑蛛(4.7869);2016年前四位天敌依次是三突花蟹蛛(5.3975)、鳞纹肖蛸(4.9414)、茶色新圆蛛(4.8757)、锥腹肖蛸(4.6815)。对两年结果综合分析,卵形短须螨的前四位天敌依次是三突花蟹蛛(10.5691)、鳞纹肖蛸(10.2493)、茶色新圆蛛(9.6353)和锥腹肖蛸(9.5182)。2015年双斑长跗萤叶甲的前四位天敌依次是锥腹肖蛸(5.6926)、异色瓢虫(5.6976)、八斑球腹蛛(5.5101)和斜纹猫蛛(5.4552);2016年依次是茶色新圆蛛(5.2909)、锥腹肖蛸(5.2710)、鳞纹肖蛸(5.1063)和斜纹猫蛛(5.0703)。对两年结果综合评判,双...  相似文献   

4.
This study provides data on the phylogeny, taxonomy and distribution of 14 known and five new species of the Neotropical genus Veturius Kaup (Proculini), belonging to various subgenera and species groups: V. (Veturius) latissimus n. sp. (Colombia, Central Andes) and V. (V.) calimanus n. sp. (Pacific slope of the Occidental Cordillera) are separated from V. (V.) caquetaensis Boucher, 1988, which seems restricted to the Amazonian slope of the Oriental Cordillera (Caquetá, Putumayo); V. (V.) sinuatomarginatus Luederwaldt, 1941 (Costa Rica), n. syn. of V. sinuatocollis Kuwert, 1890; V. sinuatocollis aculeatus Luederwaldt, 1941 (syntype from Costa Rica); V. (V.) aspina Kuwert, 1898 (located in Occidente of Ecuador, Guayaquil); V. (V.) yahua Boucher, 2006 (located in Occidente of Ecuador, Pichincha and SW Colombia, Nariño); V. (V.) guntheri Kuwert, 1898 (located in Peru, SE Puno and Colombia, W Putumayo); V. (V.) cephalotes (Le Peletier & Serville, 1825) (citation from Guyana); V. (V.) sinuatus (Eschscholtz, 1829) (previous synonymy); V. (V.) libericornis Kuwert, 1891 (located in Peru, Cuzco); V. (V.) lepidus Fonseca, 1999 (revision; located in Colombia, Amazonas, Putumayo and Peru, Loreto); V. (V.) transversus (Dalman, 1817) [syntype; previous synonymy of V. trituberculatus (Eschscholtz, 1829) with V. assimilis (Weber, 1801) and located in Brazil, Mato Grosso]; V. (V.) sinuosus (Drapiez, 1820) (corrected reference for Colombia); V. (Publius) crassus (Smith, 1852) (new syntype); V. (P.) danieli Boucher, 2006 (holotype deposit); V. (P.) vazdemelloi Boucher, n. sp. (Andes of Ecuador, Azuay); V. (Ouayana) unicornis Gravely, 1918 (located in Colombia, E Vaupés); V. (O.) costaianus Boucher, n. sp. (Venezuela, Amazonas, NW Pacaraima Massif); Ticoisthmus Boucher, n. subg., for the species group of V. (O.) laevior (Kaup, 1868), of southern Central America; and V. (T.) brachypterus Boucher, n. sp. (Costa Rica, Sierra Talamanca). Ticoisthmus is considered the sister group of Ouayana. It belongs to the Meso-American low mountain dispersion pattern and demonstrates, especially in the genus Veturius, but also more generally in the Neotropical passalids, the hot-spot characteristics, with diversity and endemism, of the narrow land between the Depression of Nicaragua and the Isthmus of Panama.  相似文献   

5.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

6.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

7.
Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyia syn.n. , Ptochomyza syn.n. , and Napomyza syn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n. , P. alopecuri (Griffiths) comb.n. , P. arctagrostidis (Griffiths) comb.n. , P. beigerae (Griffiths) comb.n. , P. blackstoniae (Spencer) comb.n. , P. centaurii (Spencer) comb.n. , P. chamaemetabola (Griffiths) comb.n. , P. cinnae (Griffiths) comb.n. , P. compta (Spencer) comb.n. , P. cygnicollina (Griffiths) comb.n. , P. doolittlei (Spencer) comb.n. , P. elgonensis (Spencer) comb.n. , P. eriodictyi (Spencer) comb.n. , P. flavida (Spencer) comb.n. , P. fricki (Griffiths) comb.n. , P. furcata (Griffiths) comb.n. , P. griffithsiana (Beiger) comb.n. , P. hoppiella (Spencer) comb.n. , P. ixeridopsis (Griffiths) comb.n. , P. kluanensis (Griffiths) comb.n. , P. leptargyreae (Griffiths) comb.n. , P. linnaeae (Griffiths) comb.n. , P. luzulivora (Spencer) comb.n. , P. mimuli (Spencer) comb.n. , P. mitchelli (Spencer) comb.n. , P. montella (Spencer) comb.n. , P. nigrilineata (Griffiths) comb.n. , P. nigrissima (Spencer) comb.n. , P. orbitella (Spencer) comb.n. , P. paraciliata (Godfray) comb.n. , P. poae (Griffiths) comb.n. , P. pseudomilii (Griffiths) comb.n. , P. qinghaiensis (Gu) comb.n. , P. rhaetica (Griffiths) comb.n. , P. scabiosella (Beiger) comb.n. , P. seneciophila (Spencer) comb.n. , P. shepherdiana (Griffiths) comb.n. , P. spenceriana (Griffiths) comb.n. , P. styriaca (Griffiths) comb.n. , P. subnigra (Spencer) comb.n. , P. suikazurae (Sasakawa) comb.n. , P. symphoricarpi (Griffiths) comb.n. , P. syngenesiae (Hardy) comb.n. , P. thermarum (Griffiths) comb.n. , P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n. , P. acutiventris (Zlobin) comb.n. , P. angulata (Zlobin) comb.n. , P. arcticola (Spencer) comb.n. , P. bellidis (Griffiths) comb.n. , P. carotae (Spencer) comb.n. , P. cichorii (Spencer) comb.n. , P. curvipes (Zlobin) comb.n. , P. dubia (Zlobin) comb.n. , P. filipenduliphila (Zlobin) comb.n. , P. flavivertex (Zlobin) comb.n. , P. flavohumeralis (Zlobin) comb.n. , P. genualis (Zlobin) comb.n. , P. grandella (Spencer) comb.n. , P. humeralis (Zlobin) comb.n. , P. immanis (Spencer) comb.n. , P. immerita (Spencer) comb.n. , P. inquilina (Kock) comb.n. , P. kandybinae (Zlobin) comb.n. , P. lacustris (Zlobin) comb.n. , P. laterella (Zlobin) comb.n. , P. manni (Spencer) comb.n. , P. maritima (Tschirnhaus) comb.n. , P. merita (Zlobin) comb.n. , P. mimula (Spencer) comb.n. , P. minuta (Spencer) comb.n. , P. montanoides (Spencer) comb.n. , P. neglecta (Zlobin) comb.n. , P. nigriceps (van der Wulp) comb.n. , P. nugax (Spencer) comb.n. , P. pallens (Spencer) comb.n. , P. paratripolii (Chen & Wang) comb.n. , P. plumea (Spencer) comb.n. , P. plumigera (Zlobin) comb.n. , P. prima (Zlobin) comb.n. , P. pubescens (Zlobin) comb.n. , P. schusteri (Spencer) comb.n. , P. scrophulariae (Spencer) comb.n. , P. suda (Spencer) comb.n. , P. tanaitica (Zlobin) comb.n. , P. tenuifrons (Zlobin) comb.n. , P. vivida (Spencer) comb.n. , P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n. Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montana Spencer, 1981 ; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.  相似文献   

8.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

9.
Fourteen species of aphids (Hemiptera: Aphidoidea) are recorded as new to Saudi Arabia. These are: Aphis coreopsidis (Thomas, 1878); Aphis illinoisensis Shimer, 1866; Baizongia pistaceae (Linnaeus, 1767); Capitophorus elaeagni (del Guercio, 1894); Dysaphis plantaginea (Passerini, 1860); Eucarazzia elegans (Ferrari, 1872); Geoica lucifuga (Zehntner, 1897); Hayhurstia atriplicis (Linnaeus, 1761); Macrosiphoniella absinthii (Linnaeus, 1758); Macrosiphoniella sanborni (Gillette, 1908); Smynthurodes betae Westwood, 1849; Uroleucon cichorii (Koch, 1855), and Wahlgreniella nervata (Gillette, 1908). Among these, three species, i.e. A. coreopsidis, A. illinoisensis, and W. nervata are alien species.  相似文献   

10.
A total of 25 items are listed. 16 are new taxa described from South and East Anatolia:Papaver (1),Heldreichia (1),Astragalus (1),Lotus (1),Onobrychis (3),Sempervivum (2),Hellenocarum (1),Cirsium (2),Campanula (1),Omphalodes (1),Allium (1) andPuccinellia (1). Nine other species belonging to the generaDiplotaxis, Beta, Acacia, Lupinus, Cirsium, Limonium, Calamagrostis andPuccinellia, are new records for the Flora of Turkey area. Two combinations are made, one inPapaver (p. 113), the other inHellenocarum (p. 122).  相似文献   

11.
The stereochemical inversion of (R)-5-hydroxymethyl-3-tert-butyl-2-oxazolidinone (la) or (R)-5-hydroxymethyl-3-isopropyl-2-oxazolidinone (lb) to the corresponding (S)-isomer was accomplished via a key intermediate, (R)-3-N-ethoxycarbonyl-N-tert-butylamino-l,2-epoxypropane (5a) or (R)-3-N-ethoxycarbonyl-N-isopropylamino-l,2-epoxypropane (5b), in a high enantiomeric excess. (S)-la (99%e.e.) or (S)-lb (91%e.e.) was thus obtained from the respective (R)-isomer (la; 99%e.e., lb; 95%e.e.).  相似文献   

12.
This paper summarizes the data on the oribatid mite fauna of the family Suctobelbidae Grandjean, 1954, recorded from the Caucasus. The distribution of 47 species of the genera Suctobelba Paoli, 1908, Suctobelbella Jacot, 1937, and Suctobelbila Jacot, 1937 in the territory of the Caucasus is shown. The following five new species and four new subspecies are described: Suctobelba cornigera sp. n., S. flagelliseta sp. n., S. scalpellata caucasica ssp. n., Suctobelbella (Suctobelbella) liacariformis sp. n., S. (S.) acutidens pilososetosa ssp. n., S. (S.) subcornigera maculata ssp. n., S. (Flagrosuctobelba) diversosetosa arilloi ssp. n., S. (F.) nana sp. n., and S. (F.) sensillinuda sp. n. Four species belonging to the genus Suctobelbella changed their status: S. (S.) acutidens duplex (Strenzke, 1950) stat. n., S. (S.) acutidens sarekensis (Forsslund, 1941) stat. n., S. (S.) subcornigera vera (Moritz, 1964) stat. n. and S. (Flagrosuctobelba) forsslundi moritzi Mahunka, 1987 stat. n. S. (S.) hammerae (Krivolutsky, 1965) was synonymized to S. (S.) acutidens duplex. The genus Suctobelbila and the species Suctobelbila dentata europaea Moritz, 1974, Suctobelba altvateri Moritz, 1970, S. atomaria Moritz, 1970, S. secta Moritz, 1970, Suctobelbella (S.) acutidens sarekensis, S. (S.) hastata Pankow, 1986, S. (S.) subcornigera vera stat. n., S. (Flagrosuctobelba) ancorhina Chinone, 2003, S. (F.) elegantula (Hammer, 1958), S (F.) flagellifera Chinone, 2003, S (F.) granifera Chinone, 2003, S. (F.) forsslundi moritzi Mahunka, 1987 stat. n., and S. (F.) multiplumosa (Hammer, 1979) are recorded from the Caucasus for the first time. A key to the species is given.  相似文献   

13.
Four new subgenera, nineteen new species, two new subspecies and two new varieties of Cyperus L. are described, viz. subgen. Aristomariscus Lye, subgen. Bulbomariscus Lye, subgen. Xerocyperus Lye, subgen. Micromariscus Lye, Cyperus micromariscus Lye, C. boreochrysocephalus Lye, C. crassivaginatus Lye, C. kyllingaeformis Lye, C. cremeomariscus Lye, C. gigantobulbes Lye, C. boreobellus Lye, C. longi–involucralus Lye, C. kwaleensis Lye, C. afrovaricus Lye, C. afrodunensis Lye, C flavoculmis Lye, C microumbellatus Lye, C. purpureoviridis Lye, C. graciliculmis Lye, C. afromon–tanus Lye, C. nyererei Lye, C. afroalpinus Lye, C castaneobellus Lye, C. soyauxii Boeck. ssp. pallescens Lye, C. usitatus Burch. ssp. palmatus Lye, C. renschii Boeck. var. scabridus Lye, and C. fischerianus A. Rich. var. ugandensis Lye. The following new combinations are made: Cyperus L. subgen. Bulbocaulis (C.B.C1.) Lye, Cyperus L. subgen. Courtoisia (Nees) Lye, Cyperus L. subgen. Sorostachys (Steudel) Lye, Cyperus L. subgen. Remirea (Aublet) Lye, Cyperus L. subgen. Alinula (Raynal) Lye, Cyperus lipocarphoides (Kükenth.) Lye, C. malawicus (Raynal) Lye, C. tanganyica–nus (Kiikenth.) Lye, C. mortonii (Hooper) Lye, C. pseudodiaphanus (Hooper) Lye, C. overlaetii (Hooper & Raynal) Lye, C. dewildeorum (Raynal) Lye, C. pagotii (Raynal) Lye, C. demangei (Raynal) Lye, C. afroechinatus Lye, C. niveus Retz. var. ledermannii (Kiikenth.) Lye, C. niveus Retz. var. tisserantii (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, var. rubrotinctus (Cherm.) Lye, C. cyperoides (L.) Kuntze ssp. alternifolius (Vahl) Lye, C. cyperoides (L.) Kuntze ssp. macrocarpus (Kunth) Lye, C. cyperoides (L.) Kuntze ssp. pseudoflavus (Clarke) Lye, C. dubius Rottb. ssp. macrocephalus (Kiikenth.) Lye, C. dubius Rottb. ssp. coloratus (Vahl) Lye, C. usitatus Burch. var. stuhlmannii (Clarke) Lye, C. laxus Lam. ssp. sylvestris (Ridley) Lye, and C. laxus Lam. ssp. buchholzii (Boeck.) Lye and C. globifer (Clarke) Lye.  相似文献   

14.
Turner , B. L., W. L. Ellison , and R. M. King . (U. Texas, Austin.) Chromosome numbers in the Compositae. IV. North American species, with phyletic interpretations. Amer. Jour. Bot. 48(3): 216–223. Illus. 1961.—Chromosome counts from 116 different plant populations representing 75 taxa (72 species in 39 genera) are reported. These include the first species counts for the following genera: Actinospermum (x = 19), Baltimora (x =15), Calea (x = ca. 17, 18), Calyptocarpus (x = 12), Hecubaea (x = 17), Lagascea (x = 17), Schistocarpha (x = 8), Melanthera (x = 15), Pectis (x = 12), Perymenium (x = 15), Sanvitalia (x = 8), and Trigonospermum (x = 15). Chromosome counts for Chrysopsis trichophylla (n = 5), Cirsium horridulum (n = 16), Hidalgoa ternata (n = 16,) Tridax balbisioides (n = 10), Tridax trilobata (n = 10), and Verbesina crocata (n =18) differ from the reported basic numbers as determined from other species in these genera. Taxa closely related to Tridax procumbens were found to have the diploid number n = 9, thus establishing the polyploid nature (n = 18) of this widespread polymorphic species. When appropriate, the chromosomal information has been related to systematic problems.  相似文献   

15.
Seven species of Centrorhynchus Lühe, 1911 are present in the Parasitic Worms Collection of The Natural History Museum, London: C. aluconis (Müller, 1780) Lühe, 1911 from Strix aluco Linnaeus in Great Britain; C. buteonis (Schrank, 1788) Kostylev, 1914 from Accipiter virgatus (Temminck) (new host record) in Sri Lanka (new geographical record); C. clitorideus (Meyer, 1931) Golvan, 1956 from Athene brama (Temminck) (new host record) in India; C. crotophagicola Schmidt & Neiland, 1966 (encysted juveniles in the stomach wall) from Anolis lineatopus Grey (new host record) and A. sagrei Duméril & Bibron (new host record) from Jamaica (new geographical record); C. falconis (Johnston & Best, 1943) Golvan, 1956 from Spilornis cheela (Latham) in Sri Lanka (new geographical record); C. globocaudatus (Zeder, 1800) Lühe, 1911 from Falco ardosiaceus Vieillot (new host record) in West Africa; and C. milvus Ward, 1956 from Milvus migrans (Boddaert) in India. The species are described and figured on the basis of this material.  相似文献   

16.
Nineteen holotype specimens of the genus Torrubiella described by Dr. Yosio Kobayasi and Mr. Daisuke Shimizu were relocated and accession numbers (TNS-F number) were given. A new scientific name, Torrubiella plana Hiroki Sato, Ban, Masuya & Hosoya nom. nov. (TNS-F-12061), was proposed for T. minutissima Kobaysi & Shimizu (homonym of T. minutissima Lagarde). The other 18 species follow: T. alboglobosa (TNS-F-12067), T. aurantia (TNS-F-12069), T. corniformis (TNS-F-12064), T. ellipsoidea (TNS-F-12055), T. formosana (TNS-F-12059), T. fusiformis (TNS-F-234548), T. globosostipitata (TNS-F-12057), T. longissima (TNS-F-12071), T. mammillata (TNS-F-12060), T. miyagiana (TNS-F-12062), T. neofusiformis (TNS-F-12058), T. oblonga (TNS-F-12070), T. ooaniensis (TNS-F-12063), T. pallida (TNS-F-12789), T. rosea (TNS-F-12065), T. ryogamimontana (TNS-F-12058), T. ryukyuensis (TNS-F-11932), and T. superficialis (TNS-F-12072).  相似文献   

17.
This study is based upon material of the family Ichneumonidae collected from Erzurum and Tunceli provinces of Turkey between 2011 and 2012. 64 species in 49 genera of the family Ichneumonidae were recorded. Among them, Alloplasta tomentosa (Gravenhorst, 1829), Lissonota (Lissonota) accusator (Fabricius, 1793), Dusona nidulator (Fabricius, 1804), Olesicampe fulviventris (Gmelin, 1790), Olesicampe proterva (Brischke, 1880), Olesicampe radiella (Thomson, 1885), Aptesis nigrocincta (Gravenhorst, 1815), Cryptus moschator (Fabricius, 1787), Pleolophus brachypterus (Gravenhorst, 1815), Hadrodactylus flavofacialis Horstmann, 2000, Lagarotis semicaligata (Gravenhorst, 1820), Coelichneumon (Coelichneumon) consimilis (Wesmael, 1845), Hoplismenus axillatorius (Thunberg, 1822) and Eridolius pictus (Gravenhorst, 1829) are new to the Turkish fauna. A short zoogeographic characterisation is given for each species.  相似文献   

18.
Seven citrus orchards on reduced- to no-pesticide spray programs were sampled for predacious mites in the family Phytoseiidae (Acari: Mesostigmata) in central and south central Florida. Inner and outer canopy leaves, open flowers, fruit, twigs, and trunk scrapings were sampled monthly between September 1994 and January 1996. Vines and ground cover plants were sampled monthly between September 1994 and January 1996 in five of these orchards. The two remaining orchards were on full herbicide programs and ground cover plants were absent. Thirty-three species of phytoseiid mites were identified from 35,405 specimens collected within citrus tree canopies within the seven citrus orchards, and 8,779 specimens from vines and ground cover plants within five of the seven orchards. The six most abundant phytoseiid species found within citrus tree canopies were: Euseius mesembrinus (Dean) (20,948), Typhlodromalus peregrinus (Muma) (8,628), Iphiseiodes quadripilis (Banks) (2,632), Typhlodromips dentilis (De Leon) (592), Typhlodromina subtropica Muma and Denmark (519), and Galendromus helveolus (Chant) (315). The six most abundant species found on vines or ground cover plants were: T. peregrinus (6,608), E. mesembrinus (788), T. dentilis (451), I. quadripilis (203), T. subtropica (90), and Proprioseiopsis asetus (Chant) (48). The remaining phytoseiids included: Amblyseius aerialis (Muma), A. herbicolus (Chant), A. largoensis (Chant), A. multidentatus (Chant), A. sp. near multidentatus, A. obtusus (Koch), Chelaseius vicinus (Muma), Euseius hibisci Chant, Galendromus gratus (Chant), Metaseiulus mcgregori (Chant), Neoseiulus mumai (Denmark), N. vagus (Denmark), Phytoscutus sexpilis (Muma), Phytoseiulus macropilis (Banks), Proprioseiopsis detritus (Muma), P. dorsatus (Muma), P. macrosetae (Banks), P. rotundus (Muma), P. solens (De Leon), Typhlodromips deleoni (Muma), T. dillus (De Leon), T. dimidiatus (De Leon), T. mastus Denmark and Muma, T. simplicissimus (De Leon), and T. sp. near tunus, and Typhlodromus transvaalensis (Nesbitt). Eighty-two ground cover plants or vines were sampled within the five orchards and one or more phytoseiids were collected from 71 of these plants. Five ground cover plants with the highest numbers of phytoseiids included: Bidens alba (L.) DC (1,420 mites within 13 species), Solanum americanum L. (1,355 mites within 8 species), Amaranthus spinosus L. (1,137 mites within 11 species), Gnaphalium pensylvanicum Willd. (844 mites within 8 species) and Richardia brasiliensis (Meg.) Gomez (354 mites within 8 species).  相似文献   

19.
Esra Şeker 《Mycopathologia》2010,169(4):303-308
In this study, identification of 207 Candida isolates, previously isolated from mastitic bovine quarter milk samples at the level of genus, was made using API 20 C AUX system. The most frequently isolated species were Candida krusei (34.8%), followed by Candida rugosa (16.4%), Candida kefyr (12.6%), Candida albicans (10.1%), and Candida tropicalis (9.2%). Less common isolates were Candida zeylanoides (5.8%), Candida parapsilosis (4.3%), Candida guilliermondii (3.4%), Candida famata (1.9%), and Candida glabrata (1.5%). Additionally, in vitro hemolytic activity of all Candida strains were also examined in the present study. C. krusei (72 isolates), C. kefyr (26), C. albicans (21), C. tropicalis (19), C. zeylanoides (12), and C. glabrata (3) demonstrated both alpha and beta hemolysis at 48-h postinoculation. Only alpha hemolysis was detected in C. rugosa (34), C. guilliermondii (7), and C. famata (4), while C. parapsilosis (9) did not show any hemolytic activity after incubation for 72 h. Statistically significant difference (P < 0.001) was determined between the beta-hemolytic activities of Candida strains. The hemolytic activities of C. zeylanoides, C. albicans and C. kefyr were higher than other strains. This is the first study to describe variable hemolysis types exhibited by different Candida strains isolated from bovine mastitic milk in Turkey.  相似文献   

20.
Resumé Quinze nouvelles espèces de Monogènes Dactylogyridae sont décrites chez quinze espèces deBarbus (Teleostei, Cyprinidae) appartenant aux sous-genresB. (Barbus) etB. (Labeobarbus) en Afrique du Nord. Les barbeaux examinés proviennent des différents bassins hydrographiques du Maroc et d'une localité nommée Hamman Bourgiba en Tunisie. Dans cette dernière région, le genreBarbus n'est représenté que par une seule espèce:Barbus (B.) callensis. Au Maroc, on en dénombre actuellement quatorze dont quatre appartiennent au sous-genreLabeobarbus: il s'agit deBarbus (L.) fritschii; B. (L.) harteti; B. (L.) paytonii etB. (L.) reinii. Les dix espèces appartenant au sous-genreBarbus sont:Barbus (B.) figuiensis; B. (B.) ksibi; B. (B.) lepineyi; B. (B.) magniatlantis; B. (B.) massaensis; B. (B.) moulouyensis; B. (B.) nasus; B. (B.) pallaryi; B. (B.) setivemensis etB. (B.) issenensis.Chaque sous-genre possède son propre pool parasitaire, à l'exception deDactylogyrus marocanus n. sp., recontré sur des espèces appartenant aux deux sous-genres (B. (L.) fritschii, B. (L.) paytonii, B. (L.) harteti, B. (L.) reinii, B. (L.) nasus, B. (B.) setivimensis, B. (B.) ksibi). Sur les cinqDactylogyrus parasitant lesLabeobarbus, trois présentent une spécificité stricte vis à vis de leur hôte. Il s'agit deDactylogyrus reinii n. sp. surB. (L.) reinii; D. volutus n. sp. etD. zatensis n. sp. surB. (L.) fritschii. Les espècesD. oumiensis n. sp. etD. kulindrii n. sp. présentent une spécifité stenoxène et parasitent respectivementB. (L.) harteti, B. (L.) paytonii, B. (L.) reinii etB. (L.) fritschii, B. (L.) reinii.Nous avons recontré neufDactylogyrus chez les poisson-hôtes appartenent au sous-genreBarbus. Six d'entre eux ont une spécificité oïoxène; ce sont:D. guirensis n. sp.,D. atlasensis n. sp. etD. draaensis n. sp. surB. (B.) pallaryi; D. borjensis n. sp. surB. (B.) nasus etD. heteromorphus n. sp. etD. tunisiensis n. sp. surB. (B.) callensis. Les trois autres parasites ont un spectre d'hôtes plus large. Il s'agit deD. ksibii n. sp. recontré chezB. (B.) ksibi, B. (B.) setivimensis etB. (B.) magniatlantis; D. ksibioïdes n. sp. recontré chezB. (B.) setivimensis etB. (B.) moulouyensis. L'espèceD. fimbriphallus n. sp. stenoxène, se recontre chez les poisson-hôtes du versant Sud de l'Atlas et de la façade méditerranéenne à savoir:B. (B.) figuiensis, B. (B.) lepineyi, B. (B.) massaensis, B. (B.) moulouyensis, B. (B.) pallaryi etB. (B.) issenensis.Le rôle des Dactylogyridae en tant que marqueurs biogéographiques, phylogénétiques et taxonomiques est discuté à partir de la composition spécifique des communautés de Monogènes rencontrés et de leurs différents types morphologiques.
Fifteen new species of the Dactylogyridae (Monogenea) parasitic on fifteen species of barbels (Barbus) from North Africa (Teleostei, Cyprinidae) are described. The fishes studied belong to two subgenera,B. (Labeobarbus) andB. (Barbus), collected from various hydrographical basins of Morocco and from the Hamman Bourgiba locality in Tunisia. In the latter area, the genusBarbus is represented by onlyBarbus (Barbus) callensis. In Morocco, fourteen species are listed, four of which belong to the subgenusLabeobarbus; these areBarbus (L.) fritschii; B. (L.) harteti; B. (L.) paytonii andB. (L.) reinii. The other ten species belong to the subgenusBarbus: these areBarbus (B.) figuiensis; B. (B.) ksibi; B. (B.) lepineyi; B. (B.) magniatlantis; B. (B.) massaensis; B. (B.) moulouyensis; B. (B.) nasus; B. (B.) pallaryi; B. (B.) setivimensis andB. (B.) issenensis. Each of the two subgenera has its unique parasitic fauna, except forDactylogyrus marocanus n. sp. collected on species belonging to both subgenera (B. (L.) fritschii, B. (L.) paytonii, B. (L.) harteti, B. (L.) reinii, B. (B.) nasus, B. (B.) setivimensis andB. (B.) ksibi). Of the five monogeneans found onLabeobarbus, three appear to be specific to one host: they areDactylogyrus reinii n. sp. onB. (L.) reinii, andD. volutus n. sp. andD. zatensis n. sp. onB. (L.) fritschii. D. kulindrii n. sp. parasitisedB. (L.) reinii andB. (L.) fritschii; andD. oumiensis n. sp. occurred onB. (L.) reinii, B. (L.) paytonii andB. (L.) harteti. NineDactylogyrus species were found in fishes belonging to the subgenusBarbus. Six of them have an oïoxenous specificity: these areD. guirensis n. sp.,D. atlasensis n. sp. andD. draaensis n. sp. onB. (B.) pallaryi; D. borjensis n. sp. onB. (B.) nasus andD. heteromorphus n. sp. andD. tunisiensis n. sp. on(B.) callensis. These other three have a wider range of hosts: they areD. ksibii n. sp. collected fromB. (B.) ksibi, B. (B.) setivimensis andB. (B.) magniatlantis, andD. ksibioïdes n. sp. found onB. (B.) setivimensis andB. (B.) moulouyensis. D. fimbriphallus n. sp. is a characteristic parasite of fishes from the southern side of the Atlas mountains and the Mediterranean coast (B. (B.) figuiensis, B. (B.) lepineyi, B. (B.) massaensis, B. (B.) moulouyensis, B. (B.) pallaryi andB. (B.) issenensis).The role of dactylogyrids as biogeographical phylogenetic and taxonomic indicators is discussed in relation to the specific structure of the monogenean communities and the different morphological types found.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号