首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carmine is one of the original dyes certified by the Biological Stain Commission (BSC). Until now it has lacked both an assay procedure for dye content and a means to positively identify the dye. The methods for testing carmine in the laboratory of the BSC have been revised to include spectrophotometric examination at pH 12.5-12.6 to determine that the dye is carmine (λmax=530-335 nm). The maximum absorbance of a solution containing 100 mg of dye per liter of water, adjusted to pH 12.5-12.6, which provides a relative measure of dye content, should lie in the range 1.2 to 1.8. If the dye is not carmine, spectrophotometry at pH 1.9-2.1 shows whether it is carminic acid (λmax=490-500 nm) or 4-aminocarminic acid (λmax=525-530 nm). The latter two dyes, which are also called carmine when sold as food colorants, have physical properties different from those of true carmine. The functional tests for carmine as a biological stain are Orth's lithium-carmine method for nuclei, Southgate's mucicarmine method for mucus, and Best's carmine method for glycogen.  相似文献   

2.
This is a brief overview of the goals, evolution, and present status of the Biological Stain Commission. The main function of the Commission is the testing and certification of dye batches intended for biological applications. The testing is supported by charges made for batch testing and by the sale of certification labels affixed to individual dye containers. Submission of dyes for testing is voluntary, depending on the cooperation of the companies who sell them and the consumers who buy them. The supportive role of the University of Rochester School of Medicine and Dentistry—both past and present—is not well known and should be. Increasingly federal regulations affect the production, availability, and cost of dyes. Commission income from the sale of labels has decreased in recent years. Continuation of its work requires changes that will produce more income. Much dye is now sold in solutions instead of dry powders. The value of using Stain Commission certified dyes whenever possible is illustrated by the case of basic fuchsin. Years ago this dye was a mixture. Most basic fuchsin now marketed consists mainly of either pararosanilin (Colour Index No. 42500) or rosanilin (C.I. No. 42510). The Biological Stain Commission discovered that some certified batches of both pararosanilin and rosanilin sold as “basic fuchsin” had incorrect C.I. numbers on the labels. Sometimes that caused failure of the aldehyde fuchsin stain. Unless made with pararosanilin, aldehyde fuchsin does not stain pancreatic islet B-cells, elastic fibers, and hepatitis B surface antigen in unoxidized sections. Mislabelling by packagers may interfere with other applications of pararosanilin and rosanilin. The Commission acted to publicize and correct this problem. Biological Stain Commission publications help educate microscopists and histotechnologists about dyes and their best use. Stain Commission representatives from member scientific societies provide valuable input about changes in the availability and quality of such dyes as hematoxylin and others; they also provide useful feedback to their societies about dye problems. Each new generation of biologists and histotechnologists should be taught the importance of using only Stain Commission certified stains when available. They should be taught also to notify the Stain Commission whenever they experience problems with any certified dye.  相似文献   

3.
Although the original Commission on Standardization of Biological Stains was first organized in 1921, it was not until 1944 that this was incorporated as an independent, nonprofit organization known as the Biological Stain Commission (see Clark 1974). The certification of dyes, as indicated by special labels purchased by manufacturers or vendors for attachment to the dye containers, originated with the parent organization and has continued to this day. The objectives of the Biological Stain Commission (BSC) are 1) to identify and standardize the content and performance of dyes and dye preparations used in staining biological tissues and products, 2) to issue labels of certification to companies that buy these to inform consumers that their certified dyes meet the specifications of the BSC, 3) to carry out and to support investigations on dyes and their performance, 4) to publish scientific data concerning biological stains and their use, and 5) to maintain, through scientific meetings and correspondence, an active “dialogue” among scientific and industrial personnel concerned with biological stains. The present report summarizes Commission activity and some of the changes that have occurred during the past five years.  相似文献   

4.
This paper discusses the impact of both standardization and quality testing of dyes and stains in biology and medicine. After a brief review of why standardized dyes and stains are not presently available commercially, two types of testing and ways of improving dye quality are described. National or international organizations could be established to define standardization of dyes and stains. Standardization would be specifically defined as a list of physico-chemical parameters such as elaborated in this paper. Commercial batches of comparable quality may be labeled by the supplier as “standard dye.” a procedure currently performed by the European Council for Clinical and Laboratory Standardization (ECCLS). Also recommended to improve dye quality is commercial dye testing by independent laboratories with subsequent certification for use. This sort of quality control is currently carried out in the United States by the Biological Stain Commission (BSC). The advantages and disadvantages of both techniques and the use of image analysis for the definition of standards are discussed. A combination of both the BSC testing protocols and the ECCLS standards should be established for extended quality control of biological dyes and stains.  相似文献   

5.
A simple method is presented for distinguishing two closely related metachromatic carbocyanine dyes: Ethyl-Stains-all, a triethyl dye, and Stains-all, a diethyl methyl dye. This has become important since one lot of the triethyl dye was distributed erroneously under the diethyl methyl label. The dyes differ in solubility and in differential staining of macromolecules. Studies performed with both dyes are summarized.  相似文献   

6.
During the 12 years from 2002 to 2013, the Trustees and laboratory personnel of the Biological Stain Commission (BSC) can claim many accomplishments. These accomplishments are itemized under 11 categories: continuous publication of the official journal, Biotechnic & Histochemistry; production of four special issues of Biotechnic & Histochemistry devoted to specific dyes or stains; standardization of staining and dye purity; mechanisms of staining and prediction of dye behavior; publication of books or book chapters; effects of fixation and processing on staining; cancer research; immunohistochemistry; BSC Laboratory activities; miscellaneous publications; and administrative accomplishments.  相似文献   

7.
Abstract

In this issue of News from the Biological Stain Commission (BSC), under the heading of Regulatory affairs, the Biological Stain Commission's International Affairs Committee presents information from a meeting held in Berlin by the International Standards Organization ISO/TC 212/WG 1, “Quality and Competence in the Medical Laboratory,” on 11–12 December 2008. After this, we turn again to problems with impure dyes and find that solvent dyes are impure even for non-biological use.  相似文献   

8.
A growing worldwide movement is seeking to promote the greening of the construction sector. At the design level, proponents of frameworks such as LEED (Leadership in Energy and Environmental Design) seek to motivate designers and building owners to employ environmentally desirable materials. A prominent component of this approach is boosting availability of “green” building materials through programs that will certify to buyers that materials meet environmental standards. For wood products, this has resulted in several forms of “green certification” for forest management. Increasingly large areas of forest are now being certified worldwide. Yet it remains difficult for designers of green buildings, or consumers seeking green furniture, to obtain certified wood products. Many, if not most, of the logs now being harvested on green certified forest land worldwide are not reaching the store shelf with a certified label. Marketing certified wood all the way to the retail shelf has proved to be much harder than initially thought by proponents of certified products. This article explains the sources of these difficulties and outlines an approach to identifying products with high potential for marketing as certified products. Because of complex, multilevel supply chains for many wood products, support is required at all processing and distribution levels for a product to reach the retail customer with its green label. Market participants' purchase size and frequency, basis for product selection, buying influences, and price sensitivity are evaluated to identify product and market approaches likely to increase success rates for certified wood products. The article concludes with recommendations for expanding markets for green building materials.  相似文献   

9.
In this paper are given the methods for determining the suitability of certain dyes of the pyronin, thiazin, oxazin, azin and natural dye groups for certification by the Commission on Standardization of Biological Stains. These methods have been developed by the Commission in cooperation with the Color and Farm Waste Division, Bureau of Chemistry and Soils, U. S. Department of Agriculture. The dyes for which the methods are given in the present paper are: Pyronin G, pyronin B, neutral red, safranin, nigrosin water-soluble, brilliant cresyl blue, cresyl violet, Nile blue A, thionin, methylene blue, methylene azure (azure A), azure C, toluidine blue O, indigo carmin (indigotine) and carmin. For each of these dyes methods are discussed under the following headings: (1) identification or qualitative examination; (2) quantitative analysis; and (3) biological tests.  相似文献   

10.
Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5-12.6) followed by a qualitative scan of a low pH (1.90-2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990.  相似文献   

11.
Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5–12.6) followed by a qualitative scan of a low pH (1.90–2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990.  相似文献   

12.
Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5-12.6) followed by a qualitative scan of a low pH (1.90-2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990.  相似文献   

13.
Abstract

Azo dyes are recalcitrant compounds used as a colorant in various industries. The pollution caused by their extensive usage has adversely affected the environment for years. The existing physicochemical methods for dye pollution remediation are rather inefficient and hence there is a dearth of low-cost, potential systems capable of dye degradation. The current research studies the biodegradation potential of immobilized bacterial cells against azo dyes Reactive Orange 16 (RO-16) and Reactive Blue 250 (RB-250). Two indigenous dye degrading bacteria Bacillus sp. VITAKB20 and Lysinibacillus sp. KPB6 was isolated from textile sludge sample. Free cells of Bacillus. sp. VITAKB20 degraded 92.38% of RO-16 and that of Lysinibacillus sp. KPB6 degraded 95.36% of RB-250 within 72?h under static conditions. Upon immobilization with calcium alginate, dye degradation occurred rapidly. Bacillus. sp. VITAKB20 degraded 97.5% of RO-16 and Lysinibacillus sp. KPB6 degraded 98.2% of RB-250 within 48?h under shaking conditions. Further, the nature of dye decolorization was biodegradation as evident by high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) results. Phytotoxicity and biotoxicity assays revealed that the degraded dye products were less toxic in nature than the pure dyes. Thus, immobilization proved to be a highly likely alternative treatment for dye removal.  相似文献   

14.
Abstract

Cresyl violet and cresyl red, components of commercial cresyl violet acetate, were separated and purified using preparative column liquid chromatography. The stationary phase was silica gel and gradient elution was carried out using chloroform:methanol. The purified dyes were obtained in high yield; 51% of the original lot was recovered as cresyl violet and 40% as cresyl red. Separated materials were characterized by nuclear magnetic resonance and mass spectroscopy; UV-visible and Fourier-transform infrared spectra also were obtained for samples of pure cresyl violet and cresyl red. The colored constituents of the commercial dye lot were identified using thin layer chromatography and reverse phase high performance liquid chromatography. Both methodologies were suitable for routine testing; reverse phase high performance liquid chromatography is an appropriate tool for quality control and high resolution identification of these compounds.  相似文献   

15.
Abstract

Fluorescence resonance energy transfer (FRET) dye labeled cassettes and terminators with one or more donor dyes (fluorescein) and acceptor dye (rhodamine dyes) with benzofuran or tyrosine linker moieties were synthesized. These terminators were evaluated for their energy transfer and DNA sequencing potential using thermostable DNA polymerase.  相似文献   

16.
Abstract

The dye, Sulphorhodamine B, was entrapped within liposomes prepared by the reverse evaporation technique. Marked differences in absorption spectra were found when free and entrapped dyes were compared, with a shift in the wavelength of maximum absorption. When entrapped dye was released by lysis of the liposomes, for example by detergent, the absorption spectrum reverted to that of free dye. This absorption change was employed in a novel marker system for complement-mediated immunoassay. As a model assay, human serum albumin was measured using this approach. Liposomes which had been coated with albumin were incubated with anti-albumin antibody and complement and the resulting absorption change measured using an automated spectrophotometric analyser. The decrease in absorption change on the addition of albumin formed the basis of a competitive homogeneous immunoassay for human serum albumin. Using purified albumin as a standard, a correlation of 0.96 was obtained when the albumin in human serum was measured in the liposomal assay and the results compared to measurements using a bromocresol green method.  相似文献   

17.
《Cytotherapy》2022,24(6):619-628
Background aimsExtracellular vesicles (EVs) are involved in mediating intercellular communication processes. An important goal within the EV field is the study of the biodistribution of EVs and the identification of their target cells. Considering that EV uptake is assumed to be important for EVs in mediating intercellular communication processes, labeling with fluorescent dyes has emerged as a broadly distributed strategy for the identification of EV target cells and tissues. However, the accuracy and specificity of commonly utilized labeling dyes have not been sufficiently analyzed.MethodsBy combining recent advances in imaging flow cytometry for the phenotypic analysis of single EVs and aiming to identify target cells for EVs within therapeutically relevant mesenchymal stromal cell (MSC)-EV preparations, the authors explored the EV labeling efficacy of various fluorescent dyes, specifically carboxyfluorescein diacetate succinimidyl ester, calcein AM, PKH67, BODIPY TR ceramide (Thermo Fisher Scientific, Darmstadt, Germany) and a novel lipid dye called Exoria (Exopharm Limited, Melbourne, Australia).ResultsThe authors’ analyses qualified Exoria as the only dye that specifically labeled EVs within the MSC-EV preparations. Furthermore, the authors demonstrated that Exoria labeling did not interfere with the immunomodulatory properties of the MSC-EV preparations as tested in a multi-donor mixed lymphocyte reaction assay. Within this assay, labeled EVs were differentially taken up by different immune cell types.ConclusionsOverall, the results qualify Exoria as an appropriate dye for the labeling of EVs derived from the authors’ MSC-EV preparations. This study also demonstrates the need for the development of next-generation EV characterization tools that are able to localize and confirm the specificity of EV labeling.  相似文献   

18.
Recent intercomparison studies have clearly shown that the use of common calibrants does considerably improve the between laboratory comparability of measurement results. However, there is still a lack of certified calibrants within the field of mycotoxin analysis. Therefore, two EC-funded projects have been carried out with the aim to investigate the feasibility for the production of calibrants with certified concentrations of B-trichothecenes and for the production of a certified calibrant of zearalenone in acetonitrile. Presented at the 25th Mykotoxin Workshop in Giessen, Germany, May 19–21, 2003  相似文献   

19.
Abstract

An introduction to the nomenclature and concept of “Romanowsky stains” is followed by a brief account of the dyes involved and especially the crucial role of azure B and of the impurity of most commercial dye lots. Technical features of standardized and traditional Romanowsky stains are outlined, e.g., number and ratio of the acidic and basic dyes used, solvent effects, staining times, and fixation effects. The peculiar advantages of Romanowsky staining are noted, namely, the polychromasia achieved in a technically simple manner with the potential for stain intensification of “the color purple.” Accounts are provided of a variety of physicochemically relevant topics, namely, acidic and basic dyeing, peculiarities of acidic and basic dye mixtures, consequences of differential staining rates of different cell and tissue components and of different dyes, the chemical significance of “the color purple,” the substrate selectivity for purple color formation and its intensification in situ due to a template effect, effects of resin embedding and prior fixation. Based on these physicochemical phenomena, mechanisms for the various Romanowsky staining applications are outlined including for blood, marrow and cytological smears; G-bands of chromosomes; microorganisms and other single-cell entities; and paraffin and resin tissue sections. The common factors involved in these specific mechanisms are pulled together to generate a “universal” generic mechanism for these stains. Certain generic problems of Romanowsky stains are discussed including the instability of solutions of acidic dye–basic dye mixtures, the inherent heterogeneity of polychrome methylene blue, and the resulting problems of standardization. Finally, a rational trouble-shooting scheme is appended.  相似文献   

20.
BackgroundLaccase is one member of the blue multicopper oxidase family. It can catalyze the oxidation of various substrates. The Thermus thermophilus SG0.5JP17-16 laccase (lacTT) is thermostable, pH-stable, and high tolerance to halides, and can decolorize the synthetic dyes. In lacTT, the function of the loop 6 constructing the substrate-binding pocket wasn't clear.MethodsThe residues Asp394 and Asp396 located in loop 6, and were used to probe how the loop 6 influenced catalytic properties of the laccase. Site-directed mutagenesis was performed for two amino acids. Kinetic assay was utilized to characterize the catalytic efficiency of mutants. Mutants with different catalytic activities were used to decolorize the synthetic dyes to clarify the relationship between the catalytic efficiency and dye decolorization. Redox potential, structural and spectral analyses were performed to explain the differences in laccase activity between wild type and mutant enzymes.ResultsD394M, D394E and D394R mutants with the lower laccase activity displayed a decreased decolorization efficiency, while D396A, D396M and D396E mutant enzymes with higher catalytic efficiency decolorized the synthetic dye more efficiently than the wild type enzyme.ConclusionsThe pocket loop 6 might experience a conformational dynamics. The D394 residue controlled this conformation change by amino acid interaction networks containing the D396 residue at the entrance of substrate channel.General significancesThese studies may provide clues to improve the activity of the laccase for the better use in industrial applications, and/or contribute to further understanding the mechanism of laccase oxidation on the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号