首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine fructo-oligosaccharides, synthesized in vitro from sucrose by an enzyme preparation from asparagus roots, were isolated and their structures were elucidated to be 1F (1-β-fructofuranosyl)n sucrose [n = 1 (1-kestose), 2 (nystose) and 3], 6G (1-β-fructofuranosyl)n sucrose [n=1 (neokestose), 2 and 3] and 1F (1-β-fructofuranosyl)m-6G (1-β-fructofuranosyl)n sucrose [m=1, n=1; m=2, n =1; and m =1, n=2]. These saccharides are all known to occur naturally in asparagus roots, but 6G (1-β-fructofuranosyl)3 sucrose and 1F (1-β-fructofuranosyl)m-6G-(1-β-fructofuranosyl)n sucrose (m=1, n =1; and m=1, n=2) were the first saccharides enzymatically synthesized in vitro. Also three types of fructosyltransferases were presumed to be involved in the biosynthesis of these oligosaccharides in asparagus roots.  相似文献   

2.
Lipase from Pseudomonas aeruginosa LP602, a bacterial strain isolated from a domestic wastewater sample, was preliminarily characterized. The enzyme exhibited maximum lipolytic activity at pH 8.0 where it was also stably maintained. At 55°C, the lipase had the highest activity but not stability. The enzyme was insensitive to EDTA and to many ions tested except Zn2+. It was sensitive to SDS but not to Tween-20, Tween-80 or Triton X-100. The enzyme was active towards a number of commercial food grade fats and oils. A suitable medium formula for lipase production was MMP containing 6.25% whey as a carbon source, 1% soybean oil as inducer and 0.5% yeast extract supplement. The culture was fed with glucose to a final concentration of 0.1% at the 15th hour of incubation. Lipase production under this condition was 3.5 U ml−1. Both P. aeruginosa LP602 cells and the lipase were shown to be usable for lipid-rich wastewater treatment. Received 21 April 1998/ Accepted in revised form 6 August 1998  相似文献   

3.
Modified Candida rugosa and Pseudomonas cepacia lipase (CRL and PCL) were co-lyophilized with two pairs of synthetic diastereoisomeric amphiphiles, d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl-propionylamino)-pentanedioic acid didodecyl ester (d- and l-BIG2C12CA); d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-pentanedioic acid didodecyl ester (d- and l-2C12GE). Enzyme activities of the modified lipase in the transesterification in organic solvent were evaluated. Both pairs of the diastereoisomeric amphiphiles showed enhanced enzyme activity in the transacetylation between racemic sulcatol and isopropenyl acetate in diisopropyl ether, catalyzed by the PCL-co-lyophilizate, by 19–48 fold when compared to the native lipase lyophilized from buffer alone independent of the stereochemistry of the amphiphiles, while in the case of the CRL-co-lyophilizate only the l-BIG2C12CA showed enhanced enzyme activity in the transbutyrylation between racemic solketal and vinyl butyrate in cyclohexane as high as 68–78 fold.  相似文献   

4.
Two polyurethanases PueA and PueB from Pseudomonas protegens Pf-5 have been reported to have hydrolytic activity against synthetic p-nitrophenyl palmitate of lipase substrate, and PueA may play a more effective role in this activity. However, it is still unknown whether PueA and PueB play similar parts in the lipase activity against natural acylglycerols and achieve the extracellular secretion via their cognate ABC exporter AprDEF. In this study, we investigated these questions through the construction of four markerless deletion mutants in Pf5139 (Δupp derivative of Pf-5), two heterologous co-expression strains and their three control strains in lipase-free Escherichia coli BL21(DE3), and detected their lipase activities by the tributyrin plate assay and the liquid culture assay. The results showed that PueA and PueB, classified as subfamily I.3 lipases, are major extracellular lipases involved in the uptake of oil in Pf-5, and PueA plays a leading role in extracellular lipase activity. In addition, the extracellular secretion of PueA and PueB can be partly mediated via AprDEF in Pf-5 and BL21(DE3). Finally, PueA and PueB are also able to achieve the extracellular secretion without the assistance of AprDEF in Pf-5 and BL21(DE3).  相似文献   

5.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

6.
Eighty-five putative Pseudomonas isolates were obtained from various raw milk and pasteurized milk samples using Pseudomonas CFC agar. Among them, 36 isolates were identified as Pseudomonas fluorescens, and one isolate was identified as Pseudomonas putida. Lipase activity of the strains was quantitatively measured by the spectrophotometric method using p-nitrophenyl palmitate (p-NPP) as substrate. Detected lipase activity of the strains was between 10.03 U/mL and 22.16 U/mL. Pseudomonas fluorescens RB02-3 possessed the highest lipase activity. The extracellular lipase of P. fluorescens RB02-3 strain was homogeneously purified using a combination of ammonium sulfate precipitation, dialysis, and gel filtration column chromatography. This purification procedure resulted in 2.97-fold purification with 20.3% recovery. The enzyme was characterized, and exhibited maximum activity at pH 7.0 and 50°C; after it was incubated for 1 h it was activated in the presence of hexane, ethyl acetate, isopropanol, and ethanol and remained stable after the incubation was extended for 2 hr. The lipase was slightly inhibited in the presence of Zn2+, Co2+, Cu2+, Ni2+ salts, and ethylenediamine tetraacetic acid (EDTA), whereas Cd2+, sodium dodecyl sulfate (SDS), and Tween-80 had no effect on its activity.  相似文献   

7.
Various yeast strains were screened for production of 3-hydroxybutyric acid (3-HBA) from 1,3-butanediol (1,3-BD) by a resting cell system. Many yeasts were found to oxidize 1,3-BD to 3-HBA. Among them, Hansenula anomala IFO 0195 produced (S)-(+)-3-HBA of the highest optical purity. Reaction temperature and addition of glucose were significantly effective on the optical .purity and production of the acid. When resting cells of this strain were incubated at 27°C in an optimal reaction mixture containing 60.0 mg/ml 1,3-BD, 2.0% CaC03, and 1.0% glucose, 26.7 mg/ml of 3-HBA were produced with 88% enantiomer excess for 2 days. Dominant accumulation of (S)-(+)-3-HBA might be due to enantioselective degradation of (R)-(-)-3-HBA, though both (S)-(+)- and (R)-(-)-1,3-BD are oxidized by the strain.  相似文献   

8.
Eighteen bacterial strains were isolated from soil samples and screened for alkaline, thermophilic lipase production. Pseudomonas fluorescens NS2W was selected and its production of lipase was optimized in shake flasks using a statistical experimental design. Cell growth and lipase production were studied in shake flasks and in a 1-l fermenter in the optimized medium. Maximum lipase yields were 69.7 and 68.7 U ml−1, respectively. The optimized medium resulted in about a five-fold increase in the enzyme production, compared to that obtained in the basal medium. The lipase had an optimal activity at pH 9.0 and was stable over a wide pH range of 3–11 with more than 70% activity retention. The lipase had an optimal activity at 55°C and was stable up to 60°C with more than 70% activity retention for at least 2 h. Journal of Industrial Microbiology & Biotechnology (2002) 28, 344–348 DOI: 10.1038/sj/jim/7000254 Received 06 September 2001/ Accepted in revised form 15 March 2002  相似文献   

9.
A lipase-producing bacterium was isolated and identified as Pseudomonas monteilii TKU009. A lipase (F2) and lipase-like materials (F1) were purified from the culture supernatant of P. monteilii TKU009 with soybean powder as the sole carbon/nitrogen source. The molecular mass of F1 and F2 was estimated to be 44 kDa by SDS-PAGE and gel filtration. The optimum pH, optimum temperature, and pH and thermal stabilities of F2 were 7, 40°C, 8–11, and 50°C; and of F1 were 6, 40°C, 6–7, and 50°C, respectively. F2 was completely inhibited by EDTA and slightly by Mg2+, Fe2+, Mn2+, and SDS. F1 was completely inhibited by EDTA and Fe2+ and strongly by Zn2+, Mn2+, Ca2+, Mg2+, and SDS. The activities of both the enzymes were enhanced by the addition of non-ionic surfactants Triton X–100 and Tween 40, especially for F1. F2 preferably acted on substrates with a long chain (C10–C18) of fatty acids, while F1 showed a broad spectrum on those with chain length of C4–C18. The marked activity of F2 in organic solvents makes it an ideal choice for application in a water-restricted medium including organic synthesis. Li-June Ming is a visiting Professor at the National Cheng Kung University.  相似文献   

10.
An extracellular lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) from Pseudomonas aeruginosa KKA-5 hydrolyzed castor oil by 90%. Purification of this castor oil-hydrolyzing lipase included ammonium sulfate precipitation and successive hydroxylapatite column chromatography. The enzyme was purified 518-fold. It was homogeneous electrophoretically and its molecular weight was estimated to be 30 kDa. The enzyme was stable up to 45°C and retained its activity in the alkaline pH range. Lipase was highly stable in the presence of aqueous organic solvents like methanol and ethanol. It was weakly inhibited in the presence of acetone. The anionic surfactant, sodium dodecyl sulfate, was inhibitory while the cationic surfactants, Triton X-100 and Tween-80 appreciably enhanced activity. Lipase was stabilized significantly by Ca2+. Inactivation of the enzyme by EDTA was overcome by sequential CaCl2 treatment. This finding suggests the existence of a calcium-binding site in Pseudomonas aeruginosa KKA-5 lipase. Received 22 January 1998/ Accepted in revised form 27 April 1998  相似文献   

11.
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1–6) are composed of two steps: (1) formation of the non-covalent enzyme–inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme–inhibitor adduct (E–I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E–I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (kobs) versus inhibition concentration ([I]) plot against kobs=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the σ* values with the ρ* values of −2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the ρ* value of −2.0. The tetrahedral E–I adducts on the other hand are more negative charges than the E:I complexes due to the ρ* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   

12.
The ability of an extracellular lipase from Pseudomonas aeruginosa KKA-5 to commence hydrolysis of castor oil in the presence of various metal chlorides, was investigated. Apart from CaCl2 (commonly used for castor oil hydrolysis), AlCl3 (group IIIB), CrCl3 (group VIA) and MgCl2 (group IIA) displayed enhanced hydrolysis capability. Specifically, our statistics show that with respect to time, when Cr3+ was used, hydrolysis of castor oil was four times faster than that of calcium, and 1.6 times faster with regards to Al3+. The chlorides of group VIII and alkali metals had no effect on hydrolysis. Group IV metal chlorides did not enhance lipase activity and inhibited castor oil hydrolysis. The effect of metal ions from other groups on lipase activity is also reported. Received 14 August 1998/ Accepted in revised form 22 October 1998  相似文献   

13.
Abstract

Pseudomonas cepacia lipase (PCL) was immobilized in alginate microgel beads by electrostatic dispersion. The high electrical potential applied in the immobilization process could significantly decrease the droplet size. The optimum conditions for lipase immobilization were 2% (w/v) alginate, 100 mM CaCl2, 8 mg/mL enzyme, 4 kV electrical potential and 200 μm mean bead size. Under these conditions, 78.2 U/g of immobilized PCL activity was obtained with 39.1% retained activity and 57.2% immobilization efficiency. The immobilized PCL (PCL-CA) was subsequently used in the enantioselective hydrolysis of (R, S)-N-(2-ethyl-6-methylphenyl) alanine methyl ester. Although PCL-CA exhibited slightly lower activity than free PCL, it preserved the high enantioselectivity (E-value >?200), which afforded enantiomerically pure (R)-acid (99% e.e.p). Furthermore, PCL-CA exhibited higher thermal stability, storage and medium stability than that of free PCL. Batch-wise operational stability studies demonstrated that PCL-CA retained its initial activity for at least 10 cycles of hydrolysis.  相似文献   

14.
First enantioselective synthesis of S-(-)-1-[3-(4-tert-butylphenyl)-2-methyl]propyl-cis-3,5-dimethylmorpholine (6), biologically active enantiomer of the systematic fungicide fenpropimorph, is reported. It comprises reacting 4-tert-butylbenzylbromide with methyldiethylmalonate, decarbethoxylation of 2 into racemic 3-(4-tert-butylphenyl)-2-methylpropionic acid ethylester (3) in DMSO in the presence of alkali, then Pseudomonas sp. lipase catalyzed kinetic resolution of racemic 3 into S-(+)-acid (4), base-catalyzed racemization and recycling of the R-(-)-ester 3, acylation of cis-3,5-dimethylmorpholine, and final reduction of the intermediary amide 5 to provide enantiomerically pure S-(-)-6.  相似文献   

15.
《Chirality》2017,29(7):376-385
As the (R )‐enantiomer of racemic atenolol has no β‐blocking activity and no lack of side effects, switching from the racemate to the (S )‐atenolol is more favorable. Transesterification of racemic atenolol using free enzymes investigated as a resource to resolve the racemate via this method is limited. Screenings of enzyme, medium, and acetyl donor were conducted first to give Pseudomonas fluorescens lipase, tetrahydrofuran, and vinyl acetate. A statistical design of the experiment was then developed using Central Composite Design on some operational factors, which resulted in the conversions of 11.70–61.91% and substrate enantiomeric excess (ee ) of 7.31–100%. The quadratic models are acceptable with R2 of 95.13% (conversion) and 89.63% (ee ). The predicted values match the observed values reasonably well. Temperature, agitation speed, and substrate molar ratio factor have low effects on conversion and ee , but enzyme loading affects the responses highly. The interaction of temperature–agitation speed and temperature–substrate molar ratio show significant effects on conversion, while temperature–agitation speed, temperature–substrate molar ratio, and agitation speed–substrate molar ratio affect ee highly. Optimum conditions for the use of Pseudomonas fluorescens lipase, tetrahydrofuran, and vinyl acetate were found at 45°C, 175 rpm, 2000 U, and 1:3.6 substrate molar ratio.  相似文献   

16.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   

17.
An extracellular Pseudomonas cepacia lipase, LipA, is inactive when expressed in the absence of the product of the limA gene. Evidence has been presented that LimA is a molecular chaperone. The lipA and limA genes have been cloned in separate and independently inducible expression systems in Escherichia coli. These systems were used to test the molecular chaperone hypothesis by investigating whether LimA could activate presynthesized prelipase and whether presynthesized LimA could activate newly synthesized prelipase. The results show that LimA cannot activate presynthesized prelipase and that presynthesized LimA can activate only a limited number of de novo synthesized prelipase molecules. Co-immunoprecipitation of prelipase/lipase with LimA generated a 1:1 complex of prelipase/lipase and LimA. The results suggest that a 1:1 complex of LipA and LimA is required for prelipase processing and secretion of active lipase.  相似文献   

18.
The solvent effects of cyclopentyl methyl ether (CPME) on the reaction rates and enzyme enantioselectivity in the enantioselective transesterifications of racemic 6-methyl-5-hepten-2-ol (racemic sulcatol: SUL) and racemic 2,2-dimethyl-1,3-dioxolane-4-methanol (racemic solketal: SOL) with a series of enol esters catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins (-, -, -, partially methylated -,and 2,3,6-tri-O-methyl--cyclodextrin: CyD; CyD; CyD; Me1.78 CyD; Me3CyD) were investigated and compared with those in diisopropyl ether (IPE). In the case of SUL, enzyme activities of the co-lyophilizate with Me1.78 CyD in CPME were lower than those in IPE with every acyl source, however, the absolute enantiopreference was shown in the transesterification with vinyl butyrate (VBR) in IPME. When the substrates were SOL and VBR, the enzyme activities in CPME were greatly enhanced as high as 1.6–9.8-fold, while the enantioselectivities in CPME were comparable to those in IPE.Revisions requested 16 December 2004; Revisions received 17 January 2005  相似文献   

19.
Lipase Pseudomonas cepacia (PS) catalyzed transesterification of ethyl 3-phenylpropanoate with eleven alcohols was investigated in three ionic liquids [ILs], [Bmim]BF4, [Bmim]PF6, and [Bmim]Tf2N, consisting of an identical cation and different anions. The yields were higher in hydrophobic ILs [Bmim]Tf2N (55–96%) and [Bmim]PF6 (22–95%), than in hydrophilic [Bmim]BF4 (0–19%). The incubation of lipase PS in hydrophobic ILs for a period of 20–300 days at room temperature resulted in an increased yield of 62–98% in [Bmim]Tf2N and 45–98% in [Bmim]PF6, respectively. The lipase PS-hydrophobic IL mixture was recycled five times without any decrease in the yield of the products. In another set of experiments, the hydrolytic activity of the enzyme was determined after incubation in each of the three ILs and in hexane for 20 days at room temperature. It was found to be 1.8- and 1.6-fold higher in [Bmim]Tf2N and [Bmim]PF6, respectively, remained unchanged in [Bmim]BF4 and was 1.6 times lower in hexane as compared to the non-incubated enzyme.  相似文献   

20.
产脂肪酶菌株C7828-5的筛选、鉴定以及产酶条件的优化   总被引:1,自引:0,他引:1  
以花生油为唯一碳源,从海口市各地被油脂污染土样中分离筛选出1株中温碱性脂肪酶菌株C7828-5。形态学、生理生化特征和分子生物学鉴定结果表明,该菌株为铜绿假单胞菌(Pseudomonas aeruginosa)。该菌所产脂肪酶的最适温度为37℃,最适pH为8.0。优化了菌株的产酶条件,最适产酶培养基(g/L)为:蔗糖5、牛肉膏20、(NH_4)_2SO_41、MgSO_4·7H_2O 0.5、CaCl_20.5,聚乙烯醇花生油乳化液120 mL,发酵72 h,获得高达8.08 U/mL的脂肪酶表达量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号