首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A previously developed method for quantitative determination of 8-hydroxyguanine by gas chromatography-mass spectrometry was modified to allow measurement of 8-hydroxy-2′-deoxyguanosine in human urine. [4,5,6,8-13C4]8-Hydroxy-2′-deoxyguanosine was prepared by enzymatic coupling of [4,5,6,8-13C4]8-hydroxyguanine to deoxyribose-1-phosphate. Samples of human urine (2 ml) were spiked with the labeled nucleoside (13 nmol) and subjected to solid phase extraction and reversed phase high performance liquid chromatography. The 8-hydroxy-2′-deoxyguanosine thus isolated was hydrolyzed by treatment with aqueous formic acid, and the resulting 8-hydroxyguanine was converted into its tetrakis-trimethylsilyl derivative and subjected to gas-liquid chromatographic-mass spectrometric analysis. Repeated determinations of 8-hydroxy-2′-deoxyguanosine in pools of urine showed coefficients of variation of 5 and 8% at concentrations of 8-hydroxy-2′-deoxyguanosine equal to 18 and 2 nM, respectively. Determination of 8-hydroxy-2′-deoxyguanosine in samples of urine spiked with different amounts of the unlabeled nucleoside showed a mean recovery of 102%. Application of the analytical method to a group of 11 apparently healthy subjects (mean age, 47 years) showed a mean level of endogenously produced 8-hydroxy-2′-deoxyguanosine equal to 1.33 ± 0.29 μmol/mol creatinine. The level recorded for another group of 15 younger subjects (mean age, 28 years) was somewhat higher, that is, 1.58 ± 0.84 μmol/mol creatinine, corresponding to a 24-h production rate of 8-hydroxy-2′-deoxyguanosine equal to 20.6 ± 11.6 nmol (288 ± 140 pmol/24 h · kg body weight). Hemochromatosis is a hereditary disease characterized by increased absorption of iron from the gastrointestinal tract and deposition of iron in organs. Application of the analytical method to a group of 12 patients with hereditary hemochromatosis who were under treatment with venesections showed a mean level of urinary 8-hydroxy-2′-deoxyguanosine equal to 1.39 ± 0.40 μmol/mol creatinine. This value was not significantly different from those of healthy subjects. The fact that these patients had only slight or moderate iron overload at the time of urinary sample collection may have influenced the urinary levels of 8-hydroxy-2′-deoxyguanosine in the present study.  相似文献   

2.
《Free radical research》2013,47(2):75-87
Oxidative damage to DNA has been measured by quantitating 8-hydroxy-2′-deoxyguanosine (8-OHdGuo) after enzymic digestion of DNA, followed by HPLC separation and electrochemical detection. Alternatively, 8-hydroxyguanine (and a wide range of other base-derived products of free radical attack) may be measured after acidic hydrolysis of DNA or chromatin, followed by derivatization and gas-chromatography/mass spectrometry. Both techniques have comparable sensitivity, but GC/MS enables determination of a wide variety of chemical changes to all four DNA bases and it can be applied to DNA-protein complexes. However, the two techniques do not always give similar results. Potential reasons for this are discussed. Greater attention to methodological questions is required before using measurement of 8-OHdGuo as a “routine” marker of oxidative DNA damage in vivo.  相似文献   

3.
To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12?cells (NPC12?cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12?cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease.  相似文献   

4.
《Free radical research》2013,47(10):1238-1248
Abstract

Hepatocyte growth factor (HGF) is a potential therapeutic agent for diabetic nephropathy. The mechanisms for the renoprotective effect of HGF have been studied extensively, but antioxidant signalling of HGF in diabetic nephropathy is minimally understood. Our observations indicated that a nitrated guanine nucleotide, 8-nitroguanosine 3′5′-cyclic monophosphate (8-nitro-cGMP) diminished in high glucose (HG)-treated rat mesangial cells (RMC). However, HGF obviously lifted intracellular 8-nitro-cGMP level, which was accompanied by remarkably suppressed oxidative stress as evidenced by decreased reactive oxygen species and malondialdehyde levels and elevated glutathione level. Inhibitor of soluble guanylyl cyclase (sGC) NS-2028 and inhibitor of nitric oxide synthase (NOS) l-NMMA could block increased 8-nitro-cGMP level and repress oxidative stress by HGF. Accordingly, these two inhibitors abrogated HGF-induced nuclear accumulation of NF-E2 related factor 2 (Nrf2) and up-regulation of Nrf2 downstream glutamate-cysteine ligase catalytic subunit (GCLC) expression. In conclusion, HGF ameliorated HG-mediated oxidative stress in RMC at least in part by enhancing nitric oxide and subsequent 8-nitro-cGMP production.  相似文献   

5.
A high-performance liquid chromatographic procedure with electrochemical detection is described for the determination of urinary 8-hydroxy-2′-deoxyguanosine, a major oxidative DNA lesion induced by radical forming agents. A two-step solid-phase extraction procedure was followed for extracting 8-hydroxy-2′-deoxyguanosine from human urine and the analysis was performed on a RP-18 analytical column under isocratic conditions. The limit of detection of 8-hydroxy-2′-deoxyguanosine in urine was found to be 0.9 nM. The non-invasive assay provides an indirect measurement of oxidative DNA damage.  相似文献   

6.
Nitric oxide (NO), a gaseous free radical that is synthesized in organisms by nitric oxide synthases, participates in a critical fashion in the regulation of diverse physiological functions such as vascular and neuronal signal transduction, host defense, and cell death regulation. Two major pathways of NO signaling involve production of the second messenger guanosine 3′,5′-cyclic monophosphate (cGMP) and posttranslational modification (PTM) of redox-sensitive cysteine thiols of proteins. We recently clarified the physiological formation of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP) as the first demonstration, since the discovery of cGMP more than 40 years ago, of a new second messenger derived from cGMP in mammals. 8-Nitro-cGMP is electrophilic and reacts efficiently with sulfhydryls of proteins to produce a novel PTM via cGMP adduction, a process that we named protein S-guanylation. 8-Nitro-cGMP may regulate electrophilic signaling on the basis of its electrophilicity through induction of S-guanylation of redox sensor proteins. Examples include S-guanylation of the redox sensor protein Kelch-like ECH-associated protein 1 (Keap1), which leads to activation of NF-E2-related factor 2 (Nrf2)-dependent expression of antioxidant and cytoprotective genes. This S-guanylation-mediated activation of an antioxidant adaptive response may play an important role in cytoprotection during bacterial infections and oxidative stress. Identification of new redox-sensitive proteins as targets for S-guanylation may help development of novel therapeutics for oxidative stress- and inflammation-related disorders and vascular diseases as well as understanding of cellular protection against oxidative stress.  相似文献   

7.
Certain 6-acylaminopurines have been shown to exhibit activity in several cytokinin bioassays. The active compunds included 6-N,2′-O-dibutyryladenosine 3’:5′-cyclic monophosphate, but adenosine 3′:5′-cyclic monophosphate was inactive. The metabolites formed from [2,8-3H] 6-benzoylaminopurine by radish seedlings and excised radish cotyledons were investigated. When compared with zeatin, this amide showed considerable stability in vivo. Conversion to 6-benzylaminopurine and its riboside was not detected but slight degradation to adenine was indicated. The principal metabolite was an unidentified compund.  相似文献   

8.
Oxidative stress is related to a number of diseases due to the formation of reactive oxygen species (ROS). There are also several substances found in the occupational environment or as life style related situations that generates ROS. A stable biomarker for oxidative stress on DNA is 8-hydroxy-2′-deoxyguanosine (8-OH-dG).

A potential problem in the work-up and analysis of 8-OH-dG is oxidation of dG with false high levels as a result of analysis. This paper summarizes and discusses some of the critical moments in terms of auto-oxidation. The removal of transition metals, low temperatures, absence of isotopes (or 2′-deoxyguanosine) and incubation times are all important factors. Removal of oxygen is complicated while the problem is reduced if a nitroxide (TEMPO) is added during work-up. Certain reducing agents and enzymes could be critical if added during work-up.

The application of the 32P-HPLC method to analyze 8-OH-dG is discussed. The 32P-HPLC method is suitable for 8-OH-dG analysis and avoids several factors that oxidizes dG by removal of dG before addition of isotopes. Factors of crucial importance (columns, eluents, gradients and detection of 32P) for the analysis of 8-OH-dG are commented upon and certain recommendations are made to make it possible to apply the 32P-HPLC methodology for this type of analysis.  相似文献   

9.
Adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP) were detected at concentrations of 8–11 and 10–20 pmol · mg?1 protein, respectively, in zoospores of a brown alga, Undaria pinnatifida (Harvey) Suringer. Cellular levels of these cyclic nucleotides did not substantially change during dark to light transition. cAMP-stimulated protein phosphorylation was found in soluble cell-free extracts of zoospores of Undaria pinnatifida and Laminaria angustata Kjellman.  相似文献   

10.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

11.
12.
The effect of t-butyl hydroperoxide (t-BOOH) on the induction of the Major Histocompatibility Complex (MHC) class I genes has been studied in two cell clones (B9 and G2) of the methylcholanthrene-induced murine fibrosarcoma GR9. These two clones were selected based on their different biological and biochemical behavior specially related to their tumor induction capability when injected into a BALB/c mouse. t-BOOH (0.125mM) induced the expression of H-2 molecules in both cell clones. In B9 cell clone, in which MHC basal expression is very low or absent, t-BOOH significantly induced H-2Kd, H-2Dd and H-2Ld molecules. In G2 cell clone the expression of MHC class I genes was also enhanced by the xenobiotic, the effect being especially significant on the H-2Ld molecule which is not expressed under basal conditions. H-2 molecules expression was accompanied by the activation of the transactivator factor NFκB. These results suggest that oxidative stress may modulate the antigen expression of tumor cells and thus the immune response of the host organism.

Basal levels of oxidative parameters, such as anti-oxidant enzymes, malondialdehyde (MDA) and the DNA damaged base 8-hydroxy-2′-deoxyguanosine (8-OHdG), showed differences between the two fibrosarcoma cell clones.  相似文献   

13.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

14.
《Free radical research》2013,47(4):423-428
Several diseases of prematurity are thought to be related to oxidative injury and many of the available markers are unsatisfactory. An assay was developed using HPLC with electrochemical detection for the quantitation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a proposed indicator for oxygen-derived free radical injury to DNA in preterm infants.

A median value of 3.79 pmol/mol creatinine was obtained for normal children (2–15 years old, n = 14). Urinary 8-OHdG excretion in neonates ranged from 0–99μmol/mol creatinine. There were no gestation or birthweight related differences in urinary 8-OHdG, and no correlation with urinary malondialdehyde. Mean 8-OHdG excretion increased with postnatal age (r= 0.80, p < 0.0001, n = 15), mirroring the growth velocity curve. These changes could also be due to changes in the activity of the enzyme responsible for 8-OHdG excision.

Urinary 8-OHdG levels are unlikely to accurately reflect oxygen derived free radical activity given the strength of the relationship with growth.  相似文献   

15.
A highly sensitive and selective method for determining 8-oxoguanine in plasma and urine was developed by high-performance liquid chromatography with electrochemical detection. The compound was separated by gradient elution on a C18 reversed-phase column with a mobile phase of acetonitrile and 0.1 M sodium acetate, pH 5.2. 8-Hydroxy-2′-deoxyguanosine was used as internal standard. 8-Oxoguanine was detected electrochemically by setting the potential to +300 mV vs. Pd reference. The sensitivity of the assay was 22 ng/ml with a signal-to-noise ratio of 7:1. The within-day relative standard deviations for 8-oxoguanine quality control samples with concentrations of 3340, 1340 and 84 ng/ml were 3.6, 4.3 and 5.7% for plasma, and 4.1, 4.6 and 6.2% for urine, respectively. The day-to-day relative standard deviations for the same samples were 3.8, 6.8 and 7.1% for plasma, and 3.9, 7.0 and 7.9% for urine, respectively. The method is designed to study the pharmacokinetics and metabolic fate of O6-benzylguanine in a phase I clinical trial. Previously, O6-benzyl-8-oxoguanine was identified as the primary metabolite of O6-benzylguanine in humans. We now demonstrate that 8-oxoguanine is a further metabolite of O6-benzylguanine.  相似文献   

16.
This study investigated the effect of a single dose of tomato sauce on healthy male volunteers in a randomized crossover study. Healthy male subjects (n = 10) were enrolled. Placebo (rice and olive oil) or tomato (tomato sauce, rice and olive oil) meals were provided to the volunteers. Blood and urine samples were taken before consumption of meal (0 h) and 2, 4, 6, 24 and 48 h after meal. Consumption of tomato sauce increased plasma lycopene level by 5–22%, with a maximum level at 24 h (p<0.01) after the meal. Levels of plasma F2-isoprostanes, hydroxyeicosatetraenoic acid products, allantoin and urinary 8-hydroxy-2′-deoxyguanosine did not change after either meal, but urinary F2-isoprostanes (p<0.05) significantly decreased at 48 h compared to 0 h after the tomato sauce meal. This study showed that a single dose of tomato sauce meal had only a limited antioxidant effect in vivo.  相似文献   

17.
Summary The ventricle of the mussel Geukensia demissa is inhibited by 5-hydroxytryptamine and excited by the molluscan neuropeptide FMRFamide. Supra-threshold doses of amide result in marked positive chronotropy and inotropy within 5–15 s. 5-Hydroxytryptamine at 10-8 M produces diastolic arrest within 10 s. A 1-min exposure to FMRFamide (5 · 10-8 M) results in a small increase in the cytoplasmic levels of adenosine 3,5-cyclic monophosphate; shorter or longer exposures have no effect. The cAMP content of ventricles incubated in 5 · 10-8 M 5-hydroxytryptamine for 1 min decreases by 2.3 pmol/mg protein; longer or shorter incubations have no effect. Treatment with forskolin results in 3-or 4-fold increases in adenosine 3,5-cyclic monophosphate, but forskolin has no effect on the mechanical activity of the ventricle. The levels of inositol monophosphate, inositol 1,4-diphosphate, and inositol 1,4,5-triphosphate in tissues exposed to 5-hydroxytryptamine are not different from levels in control tissues. FMRFamide decreases the levels of these phosphoinositides by 50% or more. Lower concentrations of phorbol 12,13-diacetate (10-8 to 10-7 M) and phorbol 12-myristate, 13-acetate (10-6 M) cause positive chronotropy in the isolated ventricle; higher concentrations induce systolic arrest. These results suggest that the effects of 5HT on the ventricle are not mediated by adenosine 3,5-cyclic monophosphate or inositol 1,4,5-triphosphate. The effects of FMRFamide may involve a decrease in inositol 1,4,5-triphosphate. The effects of amide may involve a decrease in inositol 1,4,5-triphosphate. The response of the ventricles to phorbol esters suggest that protein kinase C may be involved in the regulation of cardiac contractility.Abbreviations cAMP adenosine 3,5-cyclic monophosphate - DMA dimethylformamide - DMSO dimethylsulfoxide - FMRFamide Phenylalanyl-methionyl-arginyl-phenylalanylamide - 5HT 5-hydroxytryptamine - IP inositol monophosphate - IP2 inositol 1,4-diphosphate - IP3 inositol 1,4,5-triphosphate - PDA phorbol 12,13-diacetate - PMA phorbol 12-myristate, 13-acetate - SW sea water Present address: MSU; E.M. Center, Memphis, TN 38152, USA  相似文献   

18.
Ischaemia-reperfusion (IR) injury is known to be a risk factor influencing both short and long-term graft function following transplantation. The pathophysiology of IR injury is suggested to involve elevated reactive oxygen species production resulting in oxidative damaged cellular macromolecules.

The objective of this study was to evaluate oxidative damage following IR using an isolated organ perfusion model of the transplanted kidney, in order to determine a simple, preferably non-invasive biomarker for IR injury.

Porcine kidneys were retrieved with 10 or 40 min warm ischaemic (WI) time and haemoperfused for 6 h on an isolated organ perfusion machine. ELISA was used to detect carbonyls, 8-isporostane and 8-hydroxy-2′-deoxyguanosine, representing protein, lipid and DNA damage respectively in pre and post reperfusion samples of plasma, urine and biopsy material.

Plasma carbonyl and 8-isporostane and were significantly increased in the 40 min group compared to pre-perfusion (0.96 ± 0.10 vs. 0.62 ± 0.06, P < 0.001 and 1.57(1.28–4.9) vs. 0.36(0.09–0.59), P < 0.05). The levels also correlated with creatinine clearance used to determine renal function (r = ? 0.6150, P < 0.01 and r = ? 0.7727, P < 0.01).

The results of this study suggest both plasma carbonyl and 8-isporostane to be reliable biomarkers to predict the level IR injury.  相似文献   

19.
Reactive nitrogen species, such as peroxynitrite, nitrogen oxides and nitryl chloride, have been implicated as a cause of diverse pathophysiological conditions, including inflammation, neurodegenerative and cardiovascular diseases and cancer. We previously reported that 8-nitroguanine is formed by reactions of guanine or calf-thymus DNA with peroxynitrite in vitro. In the present study, we have studied the formation of 8-nitroguanosine and 8-oxo-7,8-dihydroguanosine in reactions of calf-liver RNA with various reactive nitrogen species. 8-Nitroguanosine in RNA was found to be much more stable than 8-nitro-2' -deoxyguanosine in DNA, which rapidly depurinates to release 8-nitroguanine. Both 8-nitroguanosine and 8-oxo-7,8-dihydroguanosine were formed in calf-liver RNA following exposure to various reactive nitrogen species, such as synthetic peroxynitrite. They were also formed in RNA by reactive species formed from nitric oxide and superoxide anion generated concomitantly from 3-morpholino-sydnonimine (SIN-1) and those formed with myeloperoxidase or horseradish peroxidase in the presence of nitrite and hydrogen peroxide. 8-Nitroguanosine was detected by HPLC with an electrochemical detector in enzymatic hydrolyzates of RNA isolated from human lung carcinoma cells incubated with synthetic peroxynitrite. Our results indicate that 8-nitroguanosine in cellular RNA could be measured as a marker of damage caused by endogenous reactive nitrogen species in tissues and cells.  相似文献   

20.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), as a measure of oxidative stress, was measured before and after 12 weeks of progressive resistance strength training in 8 healthy elderly (65–80 yr) and eight healthy young (22–30 yr) men and women, and in eight adults (25–65 yr) with rheumatoid arthritis (RA).Training subjects exercised at 80% of their one-repetition maximum and performed eight repetitions per set, three sets per session, on a twice-weekly basis. 8-OHdG was measured at baseline and follow-up (at least 24 hr after the last exercise session) in the RA and elderly subject groups, and at baseline only in young subjects.Baseline 8-OHdG levels were greater among subjects with RA compared to both healthy young (P < 0.001) and elderly (P < 0.05) subjects. There were no changes in 8-OHdG levels in either RA or elderly subjects as a result of the strength training intervention.These results suggest that subjects with RA have higher levels of oxidative stress than young and elderly healthy individuals. Furthermore, there is no change in oxidative stress, measured by urinary 8-OHdG, in elderly healthy individuals or in subjects with RA after a 12-week strength training intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号