首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic functions obtained from various bovine tissues was individually subjected to column isoelectric focusing in order to resolve the glutathione S-transferase isoenzymes. The results showed a large variability in the isoenzyme pattern. All the tissues were found to have neutral-acidic forms of the enzyme, whilst liver, adrenal gland, testicle, lung and kydney contained a conspicuous amount of activity associated with the cationic forms of the enzyme. In spite of these differences, by comparison of the conjugating activity of transferases, we did not find essential inter-organ variations. Conversely, when the same tissue samples were tested for selenium independent glutathione peroxidase activity, using cumene hydroperoxide as second substrate, we observed a higher activity in the organs having the cationic form of glutathione S-transferase.  相似文献   

2.
Human brain contains one cationic (pI8.3) and two anionic (pI5.5 and 4.6) forms of glutathione S-transferase. The cationic form (pI8.3) and the less-anionic form (pI5.5) do not correspond to any of the glutathione S-transferases previously characterized in human tissues. Both of these forms are dimers of 26500-Mr subunits; however, immunological and catalytic properties indicate that these two enzyme forms are different from each other. The cationic form (pI8.3) cross-reacts with antibodies raised against cationic glutathione S-transferases of human liver, whereas the anionic form (pI5.5) does not. Additionally, only the cationic form expresses glutathione peroxidase activity. The other anionic form (pI4.6) is a dimer of 24500-Mr and 22500-Mr subunits. Two-dimensional gel electrophoresis demonstrates that there are three types of 26500-Mr subunits, two types of 24500-Mr subunits and two types of 22500-Mr subunits present in the glutathione S-transferases of human brain.  相似文献   

3.
Fluoraocetate-specific defluorinase, an enzyme which catalyzes the release of fluoride ion from the rodenticide fluoroacetate, has been purified 347-fold from mouse liver cytosol and shown to be distinct from multiple cationic and anionic glutathione S-transferase isozymes. Fluoroacetate-specific defluorinase was obtained at a final specific activity of 659 nmol of F-/min/mg of protein and was prepared in an overall yield of 12%. The isoelectric point of this hepatic enzyme was acidic, at pH 6.4, as determined by column chromatofocusing. The molecular weight of the active species was estimated at 41,000, and sodium dodecyl sulfate-polyacrylamide gels of the purified defluorinase demonstrated a predominant subunit, Mr = 27,000. Chromatofocusing completely partitioned the fluoroacetate-specific defluorinase from two separate peaks of murine anionic glutathione S-transferase activity. Rabbit antibodies prepared against the purified hepatic defluorinase quantitatively precipitated native defluorinase from mouse and rat liver, but were unable to immunoprecipitate cationic or anionic glutathione S-transferase enzymes from the same preparation. The evidence presented suggests that fluoroacetate-specific defluorinase and glutathione S-transferase activities are catalyzed by separate proteins present in the cytosol of mouse liver.  相似文献   

4.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

5.
Presence of a new form of glutathione S-transferase has been demonstrated in human erythrocytes. using two different affinity ligands this enzyme has been separated from the previously characterized glutathione S-transferases ?. The new enzyme is highly basic with a pI of > 10. The new enzyme which represents less than 5 percent of glutathione-S-transferase activity towards 1-chloro-2,4-dinitrobenzene as substrate and about 10 percent of total glutathione S-transferase protein of erythrocytes has different amino acid composition, substrate specificities, and immunological characteristics from those of the major erythrocyte glutathione S-transferase ?. Immunological properties of the new enzyme indicate that this form may be different from other glutathione S-transferases of human tissues.  相似文献   

6.
Since the eye is constantly exposed to potentially damaging chemical compounds present in the atmosphere and vascular system, we investigated the physiological role of glutathione S-transferase (GSH S-transferase) in detoxification mechanisms operative in the ocular lens. We have purified an anionic and a cationic GSH S-transferase from the bovine lens to homogeneity through a combination of gel filtration, ion-exchange and affinity chromatography. The anionic (pI 5.6) and cationic (pI 7.4) S-transferases were found to have distinct kinetic parameters (apparent Km and Vmax. pH optimum and energy of activation). However, both species were demonstrated to have similar molecular weights and amino acid compositions. Double-immunodiffusion and immunotitration studies showed that both lens S-transferases were immunologically similar. The very close similarity in amino acid compositions and immunological properties strongly indicates that these two transferases either originate from the same gene or at least share common antigenic determinants and originate from similar genes. The bovine lens GSH S-transferases had no glutathione peroxidase activity with either t-butyl hydroperoxide or cumene hydroperoxide as substrate. However, the antibody raised against the homogeneous anionic glutathione S-transferase from the bovine lens was found to precipitate both glutathione S-transferase and glutathione peroxidase activities out of solution in the supernatant of a crude bovine liver homogenate.  相似文献   

7.
Starch-gel electrophoresis was used to demonstrate two forms of glutathione S-transferase in human erythrocytes. Whereas considerable inter-individual differences in enzyme activity and electrophoretic patterns were detected, intra-individual differences were small.  相似文献   

8.
The significance of glutathione S-conjugate in the regulation of glutathione synthesis was studied using human erythrocyte gamma-glutamylcysteine synthetase. Feedback inhibition of the enzyme by reduced glutathione was released by the addition of the glutathione S-conjugate (S-2,4-dinitrophenyl glutathione). A half-maximal effect of glutathione S-conjugate on gamma-glutamylcysteine synthetase activity was obtained at approximately 1 microM; 50 microM glutathione S-conjugate in the presence of 10 mM glutathione actually increased the enzyme activity twofold above uninhibited levels. Glutathione S-conjugate had no effect on the enzyme activity in the absence of glutathione. When erythrocytes were exposed to the electrophile 1-chloro-2,4-dinitrobenzene, which forms a glutathione S-conjugate by the catalytic reaction of glutathione S-transferase, the level of glutathione synthesis increased. These data suggest that glutathione S-conjugate plays a role in stimulating the synthesis of glutathione.  相似文献   

9.
The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.  相似文献   

10.
The glutathione S-transferases (EC 2.5.1.18) have been purified to electrophoretic homogeneity from 105,000g supernatant of sheep liver homogenate by employing a combination of gel filtration on Sephadex G-150 and affinity chromatography on S-hexylglutathione-linked Sepharose-6B columns. Approximately 70% of the original glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene and glutathione peroxidase activity toward cumene hydroperoxide could be recovered by this purification method. Of particular importance in developing this procedure was the fact that the enzyme preparation obtained after affinity column chromatography represented all the isozymes of sheep liver glutathione S-transferases. Further purification by CM-cellulose and DEAE-cellulose column chromatography resolved the glutathione S-transferases into seven distinct cationic isozymes designated C-1, C-2, C-3, C-4, C-5, C-6, and C-7 and five overlapping anionic transferases designated A-1, A-2, A-3, A-4, and A-5, respectively, in the order of their elution from the ion-exchange columns. The sodium dodecyl sulfate SDS-gel electrophoretic data on subunit composition revealed that cationic enzymes are composed of two subunits with an identical Mr of 24,000 whereas a predominant subunit with Mr of 26,000 was observed in all anionic isozyme peaks except A-1. Cationic isozymes accounted for approximately 98% of the total peroxidase activity associated with the glutathione S-transferase whereas only A-1 of the anionic isozymes displayed some peroxidase activity. Isozyme C-4 was found to be the most abundant glutathione S-transferase in the sheep liver. Characterization of the individual transferases by their specificity toward a number of selected substrates, subunit composition, and isoelectric points showed some similarities to those patterns for human liver glutathione S-transferases.  相似文献   

11.
Glutathione peroxidase activities from rat liver   总被引:1,自引:0,他引:1  
There are two enzymes in rat liver with glutathione peroxidase activity when cumene hydroperoxide is used as substrate. One is the selenium-requiring glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9) and the other appears to be independent of dietary selenium. Activities of the two enzymes vary greatly among tissues and among animals. The molecular weight of the enzyme with selenium-independent glutathione peroxidase activity was estimated by gel filtration to be 35 000, and the subunit molecular weight was estimated by dodecyl sulfate-polyacrylamide gel electrophoresis to be 17 000. Double reciprocal plots of enzyme activity as a function of substrate concentration produced intersecting lines which are suggestive of a sequential reaction mechanism. The Km for glutathione was 0.20 mM and the Km for cumene hydroperoxide was 0.57 mM. The enzyme was inhibited by N-ethylmaleimide, but not by iodoacetic acid. Inhibition by cyanide was competitive with respect to glutathione and the Ki for cyanide was 0.95 mM. This selenium-independent glutathione peroxidase also catalyzes the conjugation of glutathione to 1-chloro-2,4-dinitrobenzene. Along with other similarities to glutathione S-transferase, this suggests that the selenium-independent glutathione peroxidase and glutathione S-transferase activities in rat liver are of the same enzyme.  相似文献   

12.
The activity of in vitro glutathione S-transferase towards 1-chloro-2,4-dinitrobenzene was examined in liver, renal cortex, and small intestine (duodenum, jejunum, ileum) after the in vivo treatment of male Wistar rats with streptozotocin or alloxan. The studies were performed at 2, 10, 24, and 48 h and 7 and 15 days after streptozotocin treatment or 24 and 48 h after alloxan treatment. The results indicated that while the blood levels of insulin-glucose did not show variations, there were no alterations of the glutathione S-transferase activity in the tissues tested. On the other hand, when the treatments caused modifications on blood insulin-glucose levels, there were changes of glutathione S-transferase activity in all tissues (except in the ileum) in such a way that a direct relationship between plasma insulin levels and glutathione S-transferase activity could be demonstrated. These results were also confirmed through insulin administration to control and diabetic rats. The data demonstrate a possible regulation of glutathione S-transferase activity by blood insulin and (or) glucose levels in the tissues tested.  相似文献   

13.
1. Using a specific and sensitive GLC method for the determination of glyceryl trinitrate (GTN), its subcellular and tissue distribution were reassessed. Liver was the most active tissue, but activity was also detected in the heart, kidney and gut. In all tissues activity was localized in the soluble fraction. The activity of soluble glutathione S-transferase followed the same pattern, liver exhibiting the highest and the heart the lowest activity. 2. Pretreatment with phenobarbitone and 3-methylcholanthrene stimulated both the glutathione S-transferase and organic nitrate reductase activities. 3. Glutathione S-transferase activity was competitively inhibited by GTN. 4. A comparison of the plasma and hepatic metabolism of GTN revealed higher drug affinity for the hepatic enzyme.  相似文献   

14.
Glutathione S-transferase activity from human platelets was purified to homogeneity by affinity chromatography. The purified enzyme was found to be the acidic form and its molecular and catalytic properties were identical to acidic glutathione S-transferases purified from other human tissues. The purified platelet enzyme had no peroxidase activity and did not protect microsomes against peroxidation.  相似文献   

15.
The effect of enzymatically generated reduced oxygen metabolites on the activity of hepatic microsomal glutathione S-transferase activity was studied to explore possible physiological regulatory mechanisms of the enzyme. Noradrenaline and the microsomal cytochrome P-450-dependent monooxygenase system were used to generate reduced oxygen species. When noradrenaline (greater than 0.1 mM) was incubated with rat liver microsomes in phosphate buffer (pH 7.4), an increase in microsomal glutathione S-transferase activity was observed, and this activation was potentiated in the presence of a NADPH-generating system; the glutathione S-transferase activity was increased to 180% of the control with 1 mM noradrenaline and to 400% with both noradrenaline and NADPH. Superoxide dismutase and catalase inhibited partially the noradrenaline-dependent activation of the enzyme. In the presence of dithiothreitol and glutathione, the activation of the glutathione S-transferase by noradrenaline, with or without NADPH, was not observed. In addition, the activation of glutathione S-transferase activity by noradrenaline and glutathione disulfide was not additive when both compounds were incubated together. These results indicate that the microsomal glutathione S-transferase is activated by reduced oxygen species, such as superoxide anion and hydrogen peroxide. Thus, metabolic processes that generate high concentrations of reduced oxygen species may activate the microsomal glutathione S-transferase, presumably by the oxidation of the sulfhydryl group of the enzyme, and this increased catalytic activity may help protect cells from oxidant-induced damage.  相似文献   

16.
Glutathione content, the activity of glutathione-dependent enzymes (glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and also SOD (superoxide dismutase) and catalase were studied in human malignant tumors (uterus, breast, and ovaries) and normal tissues. Glutathione level and the activity of glutathione-dependent enzymes were 2-3 times higher in the malignant tumors than in normal tissues. A negative correlation between the level of glutathione and glutathione-dependent enzymes (glutathione peroxidase and glutathione S-transferase) in tumors and the efficacy of postoperative chemotherapy may characterize the degree of tumor resistance to chemotherapy and therefore may have prognostic value. Low SOD and catalase activity and high activity of glutathione-dependent enzymes in tumors suggest that glutathione peroxidase and glutathione S-transferase play a major role in peroxide utilization in malignant tumors.  相似文献   

17.
18.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated from fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28,000) and a subunit (Mr 25,500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit 'Yfetus'. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

19.
We have previously shown that the two membrane bound enzymes leukotriene C synthase and microsomal glutathione S-transferase interact in vitro and in vivo. Rat basophilic leukemia cells and murine mastocytoma cells, two well-known sources of leukotriene C synthase, both expressed microsomal glutathione S-transferase as determined by Western blot analyses. Several human tissues were found to contain both leukotriene C synthase and microsomal glutathione S-transferase mRNA. These data suggest that the interaction may be physiologically important. To study this further, expression vectors encoding the two enzymes were cotransfected into mammalian cells and the subcellular localization of the enzymes was determined by indirect immunofluorescence using confocal laser scanning microscopy. The results showed that leukotriene C synthase and microsomal glutathione S-transferase were both localized on the nuclear envelope and adjacent parts of the endoplasmic reticulum. Image overlay demonstrated virtually identical localization. We also observed that coexpression substantially reduced the catalytic activity of each enzyme suggesting that a mechanism involving protein–protein interaction may contribute to the regulation of LTC4 production.  相似文献   

20.
Glutathione S-transferase is present in rat liver microsomal fraction, but its activity is low relative to the transferase activity present in the soluble fraction of the hepatocyte. We have found, however, that the activity of microsomal glutathione S-transferase is increased 5-fold after treatment with small unilamellar vesicles made from phosphatidylcholine. The increase in activity is due to the removal of an inhibitor of the enzyme from the microsomal membrane. The inhibitor is present in the organic layer of a washed Folch extract of the microsomal fraction. When this fraction of the microsomal extract is reconstituted in the form of small unilamellar vesicles, it inhibits microsomal glutathione S-transferase that had been activated by prior treatment with small unilamellar vesicles of pure phosphatidylcholine, but does not affect the activity of unactivated microsomal glutathione S-transferase. The inhibitor did not seem to be formed during the isolation of the microsomal fraction, and hence may be a physiological regulator of microsomal glutathione S-transferase. In this regard, both free fatty acid (palmitate) and lysophosphatidylcholine were shown to inhibit the enzyme reversibly. The results indicate that the activity of microsomal glutathione S-transferase is far greater than appreciated until now, and that this form of the enzyme may be an important factor in the hepatic metabolism of toxic electrophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号