首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol for extracting polysaccharides from cell walls has been modified and used to analyze histochemically two fruits with opposite characteristics. Grapes are nonclimacteric fruits and are harvested at full maturity. In contrast, kiwi fruits are climacteric and are harvested and consumed before they are physiologically mature. The two fruits were analyzed histochemically using two protocols. One method is defined as chemical, and is based on subsequential extractions of pectins by chemical agents. The other is defined as enzymatic because it removes pectins using pectinase followed by hot ammonium oxalate. In both protocols, two types of hemicellulosic polymers are removed by 1 M and 4 M/KOH leaving a cellulosic residue on the slide. Both protocols remove the same amount of pectins, thus confirming their precision. The sum of hemicellulose and the cellulosic insoluble residue are equivalent using the two methods, but the relative amounts of the cellulose and hemicellulosic polymers were dependent upon the method of extraction. When the enzyme was used to extract the pectins, there was less cellulose and more hemicellulose. The removal of polysaccharides by ammonium oxalate and by guanidinethio-cyanate in the enzymatic and the chemical protocols, respectively, yielded approximately the same amount of removed material.

Similar results were obtained from both fruits. Grape, being softer than kiwi fruit, was relatively richer in pectic substances and less rich in hemicellulose and cellulose polymers. No difference in cell wall material could be ascribed to the different ripening habits.  相似文献   

2.
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure.  相似文献   

3.
Olive fruits harvested at cherry and black stages of ripening were processed according the table olive black oxidising processing and sampled after the three main steps: storage in brine, lye treatment and thermal treatment (final product). The results show that the storage in brine contributed positively to the stabilisation of cell wall polysaccharides of olive pulp as the amounts of main polysaccharides practically were maintained in both stages of ripening. The lye treatment introduced degradation of cell walls due to the generalised loss of pectic and hemicellulosic polysaccharides and cellulose, caused by the breakage of ester and hydrogen bonds. On the other hand, the lye treatment introduced shifts in the solubilisation of polysaccharides rendering them more difficult to extract by alkali solutions and enabling their retention in the cellulosic residue, which should contribute positively to cell wall firmness. The thermal treatment introduced degradation of cellulose and increased the solubilisation of polysaccharides with a higher extent in the black olives. This work showed that the differences on the cell wall polysaccharides between stages of ripening are magnified after processing and allowed to conclude that the stage of ripening of olive fruits is determinant for obtaining a final product with adequate texture properties for table olive consumption.  相似文献   

4.
The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.  相似文献   

5.
《Carbohydrate research》1988,172(2):229-242
Pectic and hemicellulosic polysaccharides were successively extracted from an alcohol-insoluble residue (AIR) from carrot root by the actions of Pronase, hot dilute acid, cold dilute alkali, and concentrated alkali in yields corresponding to 12.6, 13.5, 21.7, and 6.7% of AIR, respectively. The first two products were fractionated further by ion-exchange chromatography. Carrot pectins contained 61.3–66.0% of galacturonic acid and 16.0–19.9% of neutral sugars, mainly galactose, arabinose, and rhamnose. Except for the alkali-soluble pectins, the degrees of methylation were high (62.9–67.1) and there was a significant degree of acetylation (7.2–13.5). Pectin fractions were homogeneous in gel-filtration chromatography with viscosity-average molecular weights varying between 36,200 and 56,500. Methylation analysis indicated the presence of arabinogalactans in the pectins extracted during the proteolysis, and fairly long chains of (1→4)-linked galactan with a branched arabinan in the two other pectic fractions. The hemicellulose fraction was mainly composed of (1→4)-linked glucan, (1→4)-linked mannan, (1→4)-linked xylan, and small but significant amounts of pectic polysaccharides. The possible association of cell-wall polymers is discussed.  相似文献   

6.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

7.
The enzymatic saccharification of plant material has been shown to be of interest in various fields, such as the production of fruit juices(1,2) and the utilization of biomass.(3) A combination of cellulase, pectinase, and hemicellulases is usually used because of the chemical composition of the matrix of plant cell walls.For apples, beet pulp, and potato fiber, almost a complete hydrolysis of polysaccharides is obtained by combining cellulose and pectinase. For nonparenchymatic tissue, the situation is somewhat different: pectin is a minor component and the hemicellulose content is much higher. Enzyme action is restricted by the lignin barrier and by the high crystallianity of cellulose in this material. For such materials, mechanical, thermal, or chemical pretreatments are necessary to achieve hydrolysis.(4,5)This communication describes various enzymatic treatements and chemical and physical pretreatemtn, using brewers' spent grain as substrate. Spent grain is the residue of malt and grain which remains in the mash-kettle after the liquefied and saccharified starch has been removed by filtration.  相似文献   

8.
Olive fruits at the green, cherry and black stages were used to investigate the structural and microstructural changes in tissues during ripening. Scanning electron microscopy (SEM) tissue fracture of green olives resulted in cell wall breakage of epicarp and mesocarp cells. Tissue fracture resulted in fewer broken cells in cherry than in green olives and even less in black olive tissues. Cell separation occurred in the middle lamella region in some of the cells of the cherry fruit and in most of the black olive cells. Solubilization and loss of pectic polysaccharides, mainly the arabinan moiety, and glucuronoxylans occurred in the green to cherry stages. The pulp cell wall constituent polysaccharides, pectic polysaccharides, cellulose, glucuronoxylans and xyloglucans, were degraded and/or solubilized at the cherry to black ripening stages. The resultant depolymerization of the pectic polymers, especially those of the middle lamella region, was consistent with the progressive cell separation at the different ripening stages by SEM. This showed that partial solubilization of pectic, hemicellulosic and cellulosic polysaccharides within the cell wall matrix weakened the cell wall structures, preventing the breaking of cells when the tissues were fractured.  相似文献   

9.
Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.  相似文献   

10.
Abaca fibre polysaccharides were fractionated into water soluble, pectic, 1% NaOH soluble, hemicellulosic and cellulose fractions by extraction with hot water, dilute hydrochloric acid (pH 1.6), aqueous 1% NaOH and 17.5% NaOH, respectively. Cellulose (60.4–63.6%) and hemicelluloses (20.8%) were the major polysaccharides in abaca fibres. The hot water soluble polysaccharides contained noticeable amounts of pectic substances and a large proportion of neutral polysaccharides. The pectic polysaccharide preparation was enriched in both galacturonic acid and neutral sugars, including xylose, glucose, galactose, arabinose, and rhamnose. Extraction of the fibre with aqueous 1% NaOH produced the hemicellulose–lignin complex, which was enriched in xylose and, to a lesser extent, glucose-, arabinose- and galactose-containing polysaccharides, together with 7.6% associated lignin. Further extraction of the delignified fibre residue with aqueous 17.5%. NaOH removed the hemicellulose fractions, which were strongly enriched in xylose-containing polysaccharides. Besides ferulic and p-coumaric acids, six other phenolic monomers were also detected in the mixtures of alkaline nitrobenzene oxidation of associated lignin in all the polysaccharide fractions. The content of bound lignin in water soluble, pectic, and 1% NaOH soluble polysaccharides (Fractions 1, 2, and 3), isolated directly from the lignified fibres, was 12 times that of the hemicellulosic preparations (Fractions 4 and 5) isolated from the delignified fibre residues.  相似文献   

11.
Cell wall polysaccharides from black currants and bilberries were characterised in three approaches. First, compositions of skin, pulp, and seeds show the distribution of polysaccharides over these tissues. A sequential extraction of cell wall material with different aqueous extractants informs about the extractability of the different polysaccharides, viz. pectins, hemicellulose, and cellulose. Finally, by isolation of cell wall polysaccharides from juice and press cakes obtained by the conventional juice manufacturing. The polysaccharide distribution was followed during juice processing. The main difference between bilberries and black currants is the dominant sugar residue in seeds: mannose for black currants and xylose for bilberries. Most of the hemicellulolytic sugars and cellulose can be found back in the press cake. The sugar composition of the press cake is similar to the composition of the residue after sequential extraction. Black currants contain more pectic sugars than bilberries. Consequently, a commercial enzyme used during processing releases more pectic material into the juice.  相似文献   

12.
Synopsis Neutral polysaccharides have been demonstrated within thin sections of cauliflower parenchyma cell walls using the following techniques: periodic acid-Schiff-phosphotungstic acid, periodic acid-silver methenamine, periodic acid-thiocarbohydrazidesilver protein, and periodic acid-thiocarbohydrazide-osmium tetroxide. The use of a specific extraction technique employing ammonium oxalate and sodium hydroxide, followed by the histochemical staining procedures, indicates that the reactive site observed comprises the hemicellulose fraction of the wall which surrounds non-staining cellulose microfibrils.  相似文献   

13.
Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.  相似文献   

14.
The relative mass of the cell walls of tobacco (Nicotiana tabacum L.) cells adapted to grow in medium containing 30% polyethylene glycol 8000 or 428 millimolar NaCl was reduced to about 50% of that of the walls of unadapted cells. Cellulose synthesis was inhibited substantially in adapted cells. The proportions of total pectin in walls of unadapted and adapted cells were about the same, but substantial amount of uronic acid-rich material from walls of cells adapted to either NaCl or polyethylene glycol was more easily extracted with cold sodium ethylenediamine tetraacetic acid solutions (NM Iraki et al. [1989] Plant Physiol. 91: 39-47). We examined the linkage composition of the pectic and hemicellulosic polysaccharides to ascertain chemical factors that may explain this difference in physical behavior. Adaptation to stress resulted in the formation of a loosely bound shell of polygalacturonic acid and rhamnogalacturonan. Pectins extracted from walls of adapted cells by either cold sodium ethylenediamine tetraacetic acid or hot ammonium oxalate were particularly enriched in rhamnose. Compared to pectins of unadapted cells, rhamnosyl units of the rhamnogalacturonans of adapted cells were more highly substituted with polymers containing arabinose and galactose, but the side groups were of greatly reduced molecular size. Possible functional roles of these modifications in cell wall metabolism related to adaptation to osmotic stress are discussed.  相似文献   

15.
Changes in cell wall polysaccharides in oat (Avena sativa L.) leaf segments during senescence promoted by methyl jasmonate (JA-Me) were studied. During the incubation with water at 25 °C in the dark, the loss of chlorophyll of the segments excised from the primary leaves of 8-day-old green seedlings was found dramatically just after leaf excision, and leaf color completely turned to yellow after the 3- to 4-day incubation in the dark. Application of 10 µM JA-Me substantially promoted the loss of chlorophyll corresponding with the chloroplast degradation. Cell wall polysaccharides in oat leaf segments mainly consisted of hemicellulosic and cellulosic ones. During the process of leaf senescence, the amount of hemicellulosic I and II, and cellulosic polysaccharides decreased, but little in pectic polysaccharides. JA-Me significantly enhanced the decrease in cellulosic polysaccharides, but little in hemicellulosic ones. Arabinose, xylose and glucose were identified as main constituents of neutral sugars of hemicellulosic polysaccharides. The neutral sugar compositions of hemicellulosic polysaccharides changed little during leaf senescence both in the presence or absence of JA-Me. These facts suggest that JA-Me affects sugar metabolism relating to cellulosic polysaccharides during leaf senescence.  相似文献   

16.
Peng L  Hocart CH  Redmond JW  Williamson RE 《Planta》2000,211(3):406-414
 Three non-allelic radial swelling mutants (rsw1, rsw2 and rsw3) of Arabidopsisthaliana L. Heynh. were shown to be specifically impaired in cellulose production. Fractionation methods that identify, characterise and quantify some of the major cell wall polysaccharides in small quantities of seedlings demonstrated that changes in the production of cellulose are much more pronounced than changes in the production of non-cellulosic polysaccharides. A crude cell wall pellet was sequentially extracted with chloroform methanol (to recover lipids), dimethyl sulphoxide (starch), ammonium oxalate (pectins) and alkali (hemicelluloses). Crystalline cellulose remained insoluble through subsequent treatments with an acetic/nitric acid mixture and with trifluoroacetic acid. Cetyltrimethylammonium bromide precipitation resolved neutral and acidic polymers in the fractions, and precipitation behaviour, monosaccharide composition and glycosidic linkage patterns identified the major polysaccharides. The deduced composition of the walls of wild-type seedlings and the structure and solubility properties of the major polymers were broadly typical of other dicots. The three temperature-sensitive, radial swelling mutants produced less cellulose in their roots than the wild type when grown at their restrictive temperature (31 °C). There were no significant differences at 21 °C where no radial swelling occurs. The limited changes seen in the monosaccharide compositions, glycosidic linkage patterns and quantities of non-cellulosic polysaccharides support the view that the RSW1, RSW2 and RSW3 genes are specifically involved in cellulose synthesis. Reduced deposition of cellulose was accompanied by increased accumulation of starch. Received: 15 December 1999 / Accepted: 18 January 2000  相似文献   

17.
Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta‐xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta‐mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2–20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.  相似文献   

18.
Itoh  T.; Ogawa  T. 《Plant & cell physiology》1993,34(8):1187-1196
The architecture of the primary cell wall of poplar cells insuspension culture was observed after application of rapid-freezingand deep-etching techniques both before and after the sequentialextraction of cell wall polysaccharides. The architecture ofthe cell wall was also examined after treatment with pectin-degradingenzymes. The dimensions of interfibrillar spaces or pores increasedafter the extraction of pectins by chemical or enzymatic treatment.The ordered spacing of cellulose microfibrils was only slightlyaltered after treatment with 0.7 M KOH but was dramaticallyaltered after treatment with 4.3 M KOH. These results suggestthat a hemicellulose, perhaps xyloglucan, may have a substantialrole in maintaining the three-dimensional conformation via interfibrillarpolysaccharide linkages in the cell wall of this dicotyledonousspecies. 2Present address: Tobacco Central Laboratory, Japan TobaccoIndustry Co. Ltd., Midoriku, Yokohama, Kanagawa, 227 Japan  相似文献   

19.
The opportunity for detecting the presence and the amount of lignin-carbohydrate complexes (LCCs) in renewable feedstocks is a major issue for the complete utilization of biomass. Indeed, LCCs are known to shield cellulose from enzymatic hydrolysis, reducing the efficiency of the digestion processes needed for the production of biobased products. This study is focused on the chromatographic characterization of lignocellulose from agricultural residues (rice husk, wheat straw) and herbaceous energy crops ( Arundo donax , Miscanthus sinesis ) and their fractionation products (hemicellulose, cellulose, and lignin). Exploiting alternative chemical derivatizations on the aforementioned samples, it was possible to discern the connectivity among the various lignocellulosic components. The complete acetylation and benzoylation of the milled native substrates in ionic liquid media, and the systematic comparison between their GPC-UV chromatograms collected at different wavelengths has revealed itself as a straightforward technique in the detection of LCCs. This novel approach proved an extensive connectivity between the lignin and the hemicellulosic for all the analyzed specimens, whereas the cellulosic fraction was conceived as a substantially unbound moiety, accounting for the sample composition at higher molecular weights. Moreover, the collected lignin fractions were extensively characterized by means of (31)P NMR and 2D-HSQC techniques.  相似文献   

20.
Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号