首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic heparinisation induces a sharp rise not only in plasma total free fatty acids but also in 9.11-LA' concentration and in the 9,11 -LA'/9,12-LA molar ratio. This “heparin effect” is enhanced by haemodialysis with cuprophan membranes but not with polycarbonate membranes.  相似文献   

2.
A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or “molten globule” state, leading to the idea that partly folded proteins can have “beneficial effects”. The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.  相似文献   

3.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

4.
Native alpha-lactalbumins (α-LA) from equine, bovine, and human milk were not cytotoxic. However, after treatment with trifluoroethanol (TFE), all three α-LAs exhibited cytotoxicity. Toxic potencies were distinctly different among them. Equine α-LA was the most robust, bovine α-LA was moderate, and human α-LA was weak. There were no significant structural changes as between the native and the TFE-treated α-LAs.  相似文献   

5.
The insertion of soluble proteins into membranes has been a topic of considerable interest. We have studied the insertion of bovineα-lactalbumin into single-bilayer vesicles prepared from egg phosphatidylcholine (PC). Fluoresence studies indicated rapid and tight binding of apo-α-lactalbumin (apo-α-LA) to PC vesicles as a function of pH. The binding was maximal at pH values which favor the formation of the molten globule state. As an increase of hydrophobic surface is observed in the molten globule state, this conformational state can provide a molecular basis for insertion of soluble proteins into membranes. The membrane-bound complex formed at low pH (3.0) could be isolated and was found to be stable at neutral pH. The structural characterization of the apo-α-LA-PC complex was studied by fluorescence quenching using iodide, acrylamide, and 9,10-dibromostearic acid. The results obtained indicated that some of the tryptophans of apo-α-LA were buried in the membrane interior and some were exposed on the outer side. Fluorescence quenching and CD studies indicated the membrane-bound conformation of apo-α-LA was some conformational state that is between the soluble, fully folded conformation and the molten globule state.  相似文献   

6.
Novel chimeric lacdiNAc (GalNAc(β1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of α-lactalbumin (α-LA) and β1,4-galactosyltransferase 1 (β1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous α-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and β1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine β1,4-GalT1 and α-LA, indicating that each domain of α-LA and β1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.  相似文献   

7.
The proposed similarity of conformation between α-lactalbumin (α-LA) and hen egg-white lysozyme was tested by the comparison of the thermodynamic parameters obtained from the temperature dependence of denaturation. For the denaturing reaction by guanidine hydrochloride, the value of ΔCP for α-LA is almost identical with that for lysozyme, which suggests that the amount of the hydrophobic side chains buried in the interior of the molecule is the same in the native state ; the value of ΔH° and ΔS° for α-LA are also close to those for lysozyme, and the small differences are explicable by the proposed molecular model of α-LA, which implies that the somewhat large difference in ΔG° observed previously between the two proteins does not originate from large conformational differences. These results support the conformational similarity between α-LA and lysozyme as represented by the molecular model. The heat-denatured state of α-LA is also characterized by the parameters and discussed.  相似文献   

8.
A series of N-carboxyalkyl derivatives of L-leucyl-L-alanine was synthesized and tested as inhibitors of the zinc endoproteinase thermolysin. The purpose of the study was to determine whether bifunctional N-carboxyalkyl compounds with secondary metal coordinating groups are more potent inhibitors than analogs lacking such an additional binding function. Reductive condensation of L-leucyl-L-alanine (LA) with pyruvic, oxalacetic, alpha-ketoglutaric, 2-oxopentanoic, 4-ethyloxalacetic, or imidazoylpyruvic acids gave N-[1(R, S)-carboxyethyl]-LA (I), N-[1(R, S)-carboxy-2-carboxyethyl]-LA (II), N-[1(R, S)-carboxy-3-carboxypropyl]-LA (III), N-[1(R, S)-carboxy-n-butyl]-LA (IV), N-[1(R, S)-2-ethylcarboxyethyl]-LA (V), and N-[1(R, S)-carboxy-2-(4-imidazoyl-ethyl]-LA (VI), respectively. Values of KI determined with furylacryloyl-Gly-Leu-NH2 as substrate were 116 +/- 21, 7.4 +/- 1.8, 6.3 +/- 0.5, 19.7 +/- 1.5, 17.0 +/- 1.0, and 3.3 +/- 0.1 microM for compounds I-VI, respectively. Although bifunctional inhibitors II, III, and VI were indeed more potent than I, they were not much more effective than analogs IV and V that contained noncoordinating functionalities of comparable size. The results do not provide strong evidence for chelation of the active site zinc ion as proposed, although such interactions do not appear to be ruled out altogether.  相似文献   

9.
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.  相似文献   

10.
Oxidative stress represents a major cause of cellular damage and death in the process of osteoporosis. Antimycin A (AMA) has been shown to stimulate mitochondrial superoxide anions and reactive oxygen species (ROS). α-Lipoic acid (α-LA) is a naturally occurring essential coenzyme in mitochondrial multienzyme complexes and acts as a key player in mitochondrial energy production. However, whether α-LA affects the cytotoxicity of AMA in osteoblastic cells is unknown. In this study, we investigated the protective effects of α-LA against AMA-induced cytotoxicity using the MC3T3-E1 osteoblast-like cell line. Our results indicated that α-LA treatment attenuated AMA-induced cytotoxicity and LDH release in a dose-dependent manner. Notably, a significant recovery effect of α-LA on mineralization inhibited by AMA was found. Our results also demonstrated that treatment with 50 μM AMA leads to a reduction of mitochondrial membrane potential (MMP) and the complex IV dysfunction, which was inhibited by pretreatment with α-LA in a dose-dependent manner. In addition, treatment with α-LA significantly reduced the generation of ROS and mitochondrial superoxide production induced by AMA. In addition, our result suggests that PI3K/Akt and CREB pathways are related to the protective effect of α-LA. Importantly, Hoechst 33258 staining results indicated that pretreatment with α-LA prevented AMA-induced apoptosis. Mechanistically, we found that α-LA prevents MC3T3-E1 cells from apoptosis through attenuating cytochrome C release and reducing the level of cleaved caspase-3.  相似文献   

11.
α-Lipoic acid (α-LA), an antioxidant used for diabetic polyneuropathy, was reported to induce AMP-activated protein kinase activation and reductions in insulin secretion in pancreatic beta-cells at high concentrations (≥ 500 µmol/l). This study investigated whether α-LA has a protective role under oxidative stress in beta-cells and its effect is dose-related. In INS-1 cells treated with α-LA (150-1200 µmol/l) for 24 h, α-LA itself (≥300 µmol/l) induced apoptotic death dose-dependently. However, pre-treatment with 150 and 300 µmol/l α-LA reduced the hydrogen peroxide-induced apoptosis in INS-1 cells and isolated islets. α-LA alleviated hydrogen peroxide-induced reactive oxygen species production, mitochondrial membrane depolarization and c-JNK activation in beta-cells. α-LA induced phosphoinositide 3-kinase-dependent Akt phosphorylation in INS-1 cells. While α-LA is harmful to beta-cells at high concentrations in vitro, it has potential cytoprotective effects on beta-cells under oxidative stress as in diabetes by its antioxidant properties and possibly by Akt phosphorylation at clinically relevant concentrations.  相似文献   

12.
In the lactating breast, the development of secretory alveoli consisting of differentiated cells arranged around a central lumen is dependent on signals from the extracellular environment of the cells. There are few cell lines that model this process. We previously showed that the human breast carcinoma line PMC42-LA can be induced to form organoids, reminiscent of secretory alveoli found in the lactating human breast. In this report, we used high-resolution scanning electron microscopy to show that the formation of organoids is accompanied by development of cell surface microvilli. Extracellular matrix-induced formation of microvilli occurred on the internal and external surfaces of cells in the organoids and not on surfaces in contact with the extracellular matrix. Organoid formation of PMC42-LA cells induced a rearrangement of the extracellular matrix, seen in the form of radiating fibers from the organoids. In summary, there is an interaction between PMC42-LA cells and the underlying extracellular matrix, which leads to the formation of polarized cells with well-developed microvilli. This is accompanied by organization of the extracellular matrix. PMC42-LA is a relevant model of the human breast for investigations into cell-cell and cell-matrix interactions.  相似文献   

13.
Structural investigations of molten globules provide an important contribution towards understanding protein folding pathways. A close similarity between equilibrium molten globule states and kinetic species observed during refolding has been reported for several proteins. However, the experimental conditions, and in particular the pH, under which the equilibrium and kinetic species are studied often differ significantly. For human α-lactalbumin (α-LA), the equilibrium molten globule is most often studied at pH 2, the so-called A-state, while kinetic refolding experiments are performed at neutral pH. α-LA contains a large number of acidic amino acid residues that may influence the properties of the molten globule differently at low and neutral pH. In this study, we investigate the structural preferences of the α-LA molten globule at pH 7 at the level of individual residues using nuclear magnetic resonance spectroscopy and compare these data with previous results obtained at pH 2. We show that differences exist in the conformational ensemble that describes the α-LA molten globule at these two pH values. The molten globule at pH 7 is generally less stable than that at the low pH A-state. Most notable are differences in the stability of structure for the C-helix and the calcium-binding loop that precedes it and differences in the contribution of long-range hydrophobic contacts between the N-terminal and C-terminal regions of the α-domain to the stability of the molten globule. Our results are discussed in the context of previous studies of the α-LA molten globule and can be used to reconcile apparent discrepancies in published data relating to the C-helix. In the light of our results, the low pH A-state may not be the best model for the kinetic molten globule observed during refolding of α-LA. The pH-dependent effects reported here for α-LA may be of relevance in comparisons of equilibrium and kinetic molten globules of other proteins.  相似文献   

14.
Recent findings on the antioxidant effects of pretreatment with α-lipoic acid (α-LA) on the crush injury of rat sciatic nerve confirm the possible usefulness of α-LA administration in humans with peripheral nerve injuries. We discussed this issue in relation with our recent results in which the combined employment of α-LA and γ-linolenic acid with a rehabilitation program for six weeks reduced sensory symptoms and neuropathic pain in patients with compressive radiculopathy syndrome from disc-nerve root conflict in comparison with patients submitted to rehabilitation program alone for six weeks.  相似文献   

15.
Summary The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm-Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.  相似文献   

16.
Although several studies have shown that milk protein components have a wide range of biological activities, the potential role of these proteins in the gastrointestinal mucosal defense system is less well elucidated. In this study, we investigated the effect of the major proteins in cow’s milk on gastric mucosal injury by using two acute ulcer models in Wistar rats. Gastric mucosal injury was induced by either intragastric 60% ethanol-HCl or water-immersion restraint stress (23°C, 7 h). Each test milk protein was orally administered 30 min before the induction of gastric injury. Among the major milk proteins, α-lactalbumin (α-LA) is demonstrated to have a marked protective effect against ethanol-induced gastric injury, with the same potency as that of the typical antiulcer agent, Selbex. Whey protein isolate (WPI), which contained 25% α-LA, also protected against gastric injury, while casein showed no effect. Comparative studies on the protective effect of the four major components of WPI, β-lactoglobulin, α-LA, bovine serum albumin and γ-globulins (immunoglobulins), on the basis of their contents in WPI revealed that α-LA was responsible for the protective effect of WPI, being about 4-fold more effective than WPI itself. α-LA showed dose-dependent protection against gastric injury induced by stress as well as ethanol. Pretreatment with indomethacin (10 mg/kg body weight, s.c.), which is a potent inhibitor of endogenous prostaglandin synthesis, resulted in a significant reduction in the protective effect of α-LA. These results indicate that α-LA has marked antiulcer activity as an active component of cow’s milk protein, and suggest that α-LA intake may serve to protect against gastric mucosal injury, in part through endogenous prostaglandin synthesis.  相似文献   

17.
Polyunsaturated fatty acids influence the aetiology of prostate cancer. Their effects on cellular mechanisms regulating prostate tumorigenesis are unclear. Using prostate cancer cells (LNCaP), we determined effects of n-9-OA, n-6-LA, and n-3-EPA on total PKC and its isoforms in relation to cell proliferation and PSA production. PKC-alpha, delta, gamma, iota, mu, and zeta were present in LNCaP cells; PKC-beta, epsilon, eta, and theta isoforms were not. PKC-alpha was detected only in cytosol; PKC-delta, iota, gamma, and mu were present in cytosol and in membranes. Fatty acids increased cell proliferation, total PKC activity and elicited pro-proliferative effects on specific PKC isoforms (PKC-delta and -iota). EPA and LA increased total PKC activity and reduced membrane-abundance of PKC-delta. OA reduced cytosolic and membrane PKC-delta. Only EPA reduced PKC-gamma membrane abundance. Fatty acids enhanced cytosolic PKC-iota abundance but only EPA and to a lesser extent LA increased its membrane content. Changes in PKC-delta, -iota, and -gamma did not affect PSA production.  相似文献   

18.
Overexpression of the Homo sapiens LYR motif containing 1 (LYRM1) causes mitochondrial dysfunction and induces insulin resistance in 3T3-L1 adipocytes. α-Lipoic acid (α-LA), a dithiol compound with antioxidant properties, improves glucose transport and utilization in 3T3-L1 adipocytes. The aim of this study was to investigate the direct effects of α-LA on reactive oxygen species (ROS) production and insulin sensitivity in LYRM1 overexpressing 3T3-L1 adipocytes and to explore the underlying mechanism. Pretreatment with α-LA significantly increased both basal and insulin-stimulated glucose uptake and insulin-stimulated GLUT4 translocation, while intracellular ROS levels in LYRM1 overexpressing 3T3-L1 adipocytes were decreased. These changes were accompanied by a marked upregulation in expression of insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt following treatment with α-LA. These results indicated that α-LA protects 3T3-L1 adipocytes from LYRM1-induced insulin resistance partially via its capacity to restore mitochondrial function and/or increase phosphorylation of IRS-1 and Akt.  相似文献   

19.
Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer's disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R-LA and S-LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study, we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, such as dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCs with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G protein-coupled receptors, including histamine and adenosine but not the β-adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号