首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new strategy has been developed for site-directed immobilization/rigidification of genetically modified enzymes through multipoint covalent attachment on bifunctional disulfide-glyoxyl supports. Here the mechanism is described as a two-step immobilization/rigidification protocol where the enzyme is directly immobilized by thiol-disulfide exchange between the β-thiol of the single genetically introduced cysteine and the few disulfide groups presented on the support surface (3 μmol/g). Afterward, the enzyme is uniquely rigidified by multipoint covalent attachment (MCA) between the lysine residues in the vicinity of the introduced cysteine and the many glyoxyl groups (220 μmol/g) on the support surface. Both site-directed immobilization and rigidification have been possible only on these novel bifunctional supports. In fact, this technology has made possible to elucidate the protein regions where rigidification by MCA promoted higher protein stabilizations. Hence, rigidification of vicinity of position 333 from lipase 2 from Geobacillus thermocatenulatus (BTL2) promoted a stabilization factor of 33 regarding the unipunctual site-directed immobilized derivative. In the same context, rigidification of penicillin G acylase from E. coli (PGA) through position β201 resulted in a stabilization factor of 1069. Remarkably, when PGA was site-directed rigidified through that position, it presented a half-life time of 140 h under 60% (v/v) of dioxane and 4 °C, meaning a derivative eight times more stable than the PGA randomly immobilized on glyoxyl-disulfide agarose. Herein we have opened a new scenario to optimize the stabilization of proteins via multipoint covalent immobilization, which may represent a breakthrough in tailor-made tridimensional rigidification of proteins.  相似文献   

2.
Different immobilized preparations of lipase from Thermomyces lanuginosus (TLL) have been inactivated by exposure to high temperatures, guanidine or 95% of dioxane. The studied preparations were: non-stabilized cyanogen bromide (CNBr-TLL), aminated CNBr-TLL (CNBr-TLL-A), and two stabilized preparations of aminated TLL by immobilization on glyoxyl support, Gx(9/10)-TLL-A (TLL-A immobilized at pH 9 and later incubated at pH 10) or Gx(10)-TLL-A (directly immobilized at pH 10). The reactivation of the partially inactivated immobilized enzymes under mild conditions by incubation in aqueous buffer, allowed recovery of some of the original activity, which was improved when it was pre-incubated in guanidine. Amination produced a fairly negative effect on the reactivation of the enzyme, but the multipoint covalent attachment of this aminated enzyme reversed the effect (e.g., recovered activity increased from 20% for CNBr-TLL to 80% for Gx(9/10)-TLL-A). The negative effect of the amination was clearer when the inactivation was caused by exposure to high temperatures, although the multipoint attachment of aminated enzyme was able to improve the recovered activity. The determination of enzyme activity in the presence of hexadecyltrimethylammonium bromide slowed the inactivation rates of all preparations and improved the recovery of activity after incubation under mild conditions, suggesting that the opening mechanism of the lipase could be a critical step in the TLL inactivation/reactivation. The use of multipoint attached TLL preparations did not only improve enzyme stability, but it also increased activity recovery when the preparation was incubated under mild conditions.  相似文献   

3.
We have developed a strategy for immobilization-stabilization of penicillin G acylase (PGA) from Kluyvera citrophila by controlled multipoint covalent attachment to agarose-aldehyde gels. This enzyme is composed by two dissimilar subunits noncovalently bound. Thus, in this article we establish clear correlations between enzyme stabilization and the multipoint immobilization and/or between enzyme stabilization and the involvement of the two subunits in the attachment of them to the support. We have demonstrated that important thermal stabilizations of derivatives were only obtained through a very intense enzyme-support multipoint attachment involving the whole enzyme molecule. In this way, we have prepared derivatives preserving more than 90% of catalytic activity and being more than 1000-fold more stable than soluble and one-point attached enzyme. In addition, the involvement of the two subunits in the covalent attachment to the support has proved to be essential to develop interesting strategies for reactivation of inactivated enzyme molecules [e.g., by refolding of immobilized PGA after previous unfolding with urea and sodium dodecyl sulfate (SDS)]. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20‐ to 25‐fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide‐activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl‐Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

5.
We have tested the effect of chemical modifications with formaldehyde on the activity/stability of immobilized derivatives of the enzyme penicillin G acylase (PGA). These derivatives were previously stabilized through enzyme-support multipoint covalent attachment. We carried out very different chemical treatments of our derivatives by testing the effect of different variables which control the intensity and the nature of these amine-formaldehyde reactions. The variables tested were: formaldehyde concentration, pH, time, and temperature. We also developed a colorimetric titration of the free amine groups on immobilized PGA in order to evaluate the extension of the reaction between formaldehyde and the amine groups of the enzyme. As a consequence of these studies, we have been able to get additional stabilizations of our previously stabilized-immobilized derivatives: e.g. a factor of 24-fold was achieved in terms of stabilization against irreversible thermal inactivation. The integrated effect of additional chemical modification plus previous multipoint covalent attachment has allowed us to prepare PGA derivatives which are 50,000 more thermostable than native PGA as well as most of the commercial PGA derivatives.  相似文献   

6.
The controlled and partial modification of epoxy groups of Eupergit C and EP-Sepabeads with sodium sulfide has permitted the preparation of thiol-epoxy supports. Their use allowed not only the specific immobilization of enzymes through their thiol groups via thiol-disulfide interchange, but also enzyme stabilization via multipoint covalent attachment. Penicillin G acylase (PGA) from Escherichia coli and lipase from Rhizomucor miehei were used as model enzymes. Both enzymes lacked exposed cysteine residues, but were introduced via chemical modification under very mild conditions. In the first moments of the immobilization, a certain percentage of immobilized protein could be released from the support by incubation with DTT; this confirms that the first step was via a thiol-disulfide interchange. Moreover, the promotion of some further epoxy-enzyme bonds was confirmed because no enzyme release was detected after some immobilization time by incubation with DTT. In the case of the heterodimeric PGA, it was possible to demonstrate the formation of at least one epoxy bond per enzyme subunit by analyzing with SDS-PAGE the supernatants obtained after boiling the enzyme derivatives in the presence of mercaptoethanol and SDS. Thermal inactivation studies showed that these multipoint enzyme-support attachments promoted an increase in the stability of the immobilized enzymes. In both cases, the stabilization factor was around 12-15-fold comparing optimal derivatives with their just-thiol immobilized counterparts.  相似文献   

7.
Highly activated glyoxyl-supports rapidly immobilize proteins at pH 10 (where the -amino groups of the Lys groups of the protein surface are very reactive), and stabilize them by multipoint covalent attachment. However, they do not immobilize proteins at pH 8. This paper shows that the enzyme immobilization at this mild pH value is possible by incubation of the enzymes in the presence of different thiolated compounds (dithiothreitol, DTT; was selected as optimal reagent). The thiolated compounds (even the not reducing ones) stabilized the imino bonds formed at pH 8 between the aldehydes in the support and the amino groups of the protein. However, thiolated compounds are unable to reduce the imino bonds or the aldehyde groups and a final reduction step (e.g., using sodium borohydride) was always necessary. After enzyme immobilization through the most reactive amino group of the protein, the further incubation of this immobilized enzyme at pH 10 would improve the reactivity of the -amino groups of the Lys residues of the protein surface. Then, an intense multipoint covalent reaction of the enzyme with the dense layer of glyoxyl groups in the support could be obtained, increasing the stability of the immobilized enzyme. Using three different industrially relevant enzymes (penicillin G acylase from Escherichia coli (PGA), lipase from Bacillus thermocatenulatus (BTL2) and glutaryl acylase from Pseudomonas sp. (GA)), new immobilized-stabilized biocatalysts of the enzymes were produced. After reduction, the preparations incubated at pH 10 were more stable than those that were only immobilized and reduced at pH 8. In the case of the PGA, this preparation was even 4–5-fold more stable than those obtained by direct immobilization at pH 10 (around 40,000–50,000-fold more stable than the soluble enzyme).  相似文献   

8.
Epoxy supports (Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. To achieve a significant multipoint covalent attachment, the control of the experimental conditions was found to be critical. A three-step immobilization/stabilization procedure is here proposed: 1) the enzyme is firstly covalently immobilized under very mild experimental conditions (e.g. pH 7.0 and 20 degrees C); 2) the already immobilized enzyme is further incubated under more drastic conditions (higher pH values, longer incubation periods, etc.) to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; 3) the remaining groups of the support are blocked to stop any additional interaction between the enzyme and the support. Progressive establishment of new enzyme-support attachments was showed by the progressive irreversible covalent immobilization of several subunits of multi-subunits proteins (all non-covalent structures contained in crude extracts of different microorganism, penicillin G acylase and chymotrypsin). This multipoint covalent attachment enabled the significant thermostabilization of two relevant enzymes, (compared with the just immobilized derivatives): chymotrypsin (5-fold factor) and penicillin G acylase (18-fold factor). Bearing in mind that this stabilization was additive to that achieved by conventional immobilization, the final stabilization factor become 100-fold comparing soluble penicillin G acylase and optimal derivative. These stabilizations were observed also when the inactivations were promoted by the enzyme exposure to drastic pH values or the presence of cosolvents.  相似文献   

9.
The attachment of enzymes, through their amino groups, to CNBr activated agarose gels has been tested as an immobilization stabilization system. By using this system, the development of a strategy to immobilize enzymes through multipoint covalent attachment has been studied. We have prepared different staphylococcal nuclease-Agarose derivatives by using Sepharose 2B gels previously activated with CNBr. Activity and stability of the derivatives obtained were very dependent on the degree of activation of the support. The most stable derivatives, prepared with the most activated supports, were 700 fold more stable than the soluble enzyme in irreversible thermal inactivation experiments, at 40d`C. In contrast, a significant loss of catalytic activity (kcat decreases down to 40%) was associated with the increase in stability. Colorimetric titration of amine groups in the stabilized derivatives suggested that enzyme-support multipoint attachment was the main reason for the observed stabilizing effect.

Index Entries: micrococcal nuclease immobilization enzyme stabilization enzyme-support multipoint attachment  相似文献   

10.
This paper describes the immobilization and stabilization of the lipase from Thermomyces lanuginosus (TLL) on glyoxyl agarose. Enzymes attach to this support only by the reaction between several aldehyde groups of the support and several Lys residues on the external surface of the enzyme molecules at pH 10. However, this standard immobilization procedure is unsuitable for TLL lipase due to the low stability of TLL at pH 10 and its low content on Lys groups that makes that the immobilization process was quite slow. The chemical amination of TLL, after reversible immobilization on hydrophobic supports, has been shown to be a simple and efficient way to improve the multipoint covalent attachment of this enzyme. The modification enriches the enzyme surface in primary amino groups with low pKb, thus allowing the immobilization of the enzyme at lower pH values. The aminated enzyme was rapidly immobilized at pH 9 and 10, with activities recovery of approximately 70%. The immobilization of the chemically modified enzyme improved its stability by 5-fold when compared to the non-modified enzyme during thermal inactivation and by hundreds of times when the enzyme was inactivated in the presence of organic solvents, being both glyoxyl preparations more stable than the enzyme immobilized on bromocyanogen.  相似文献   

11.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

12.
We have developed a strategy for immobilization-stabilization of alpha-chymotrypsin by multipoint covalent attachment of the enzyme, through its amino groups, to agarosealdehyde gels. We have studied the role of the main variables that control the intensity of these enzyme-support multi-interaction processes (surface density of aldehyde groups in the activated gel, contact time between the immobilized enzyme and the activated support prior to borohydride reduction of the derivatives, etc.). In this way, we have prepared a number of very different chymotrypsinagarose derivatives. Our best derivatives, with the most intense multipoint attachment, were more stable than one-point attached derivatives and were more than 60,000-fold more stable than soluble enzyme in the absence of autolysis phenomena. In spite of the dramatic stabilization, the catalytic activity of these derivatives is little changed (they only lose 35% of intrinsic activity after this intense enzyme-support multi-interaction process). In addition, we have also demonstrated the very high capacity of 6% aldehyde-agarose gels to immobilize pure chymotrypsin (40 mg enzyme/mL catalyst). Furthermore, we have been able to establish a clear correlation between enzyme-support multipoint covalent attachment, stabilization against very different denaturing agents (heat, urea, organic cosolvents), and insensitivity of those immobilized chymotrypsin molecules to some activating agents.  相似文献   

13.
A study of various direct condensations between different amines, having very high pK values, and unmodified acyl donors has been performed. This has been possible by the use of a very stable PGA derivative. First, it has been found that the higher the cosolvent concentration, the higher the pK of the acyl donor and thus the higher the yield. Therefore, these high concentrations of cosolvents seem to be a requisite for certain enzymatic condensations. Using ethanolamine and 2-hydroxy-2-phenylethyl-amine as nucleophiles and phenyl acetic acid as the acyl donor, the increase in the diglyme concentration from 50 to 90% (v/v) permitted improvement of not only the yield (reaching values higher than 99% in both cases) but also the reaction rates (by 360- or 3-fold, respectively). However, even when using PGA preparations stabilized by multipoint covalent attachment, it was not possible to obtain these results by inactivation of the enzyme derivative. Thus, in the protection of the octylamine with phenylacetic acid in 90% diglyme, the enzymatic activity was more than 20-fold higher using the hydrophilized derivative than the glyoxyl PGA, which allowed us to obtain a yield higher than 99%. Thus, the use of hydrophilized derivatives that are very stable even in the presence of high concentrations of organic solvents opens new opportunities in the use of PGA in organic chemistry.  相似文献   

14.
The covalent modification of spinach leaf ADPglucose pyrophosphorylase leads to inactivation of both activator-stimulated and -unstimulated activity. Inactivation can be prevented if either the activator 3PGA or the inhibitor Pi are present during the modification. Pi proved to be more effective at protecting the enzyme from inactivation as it afforded 50% protection at 51 µM compared to 50% protection by 405 µM 3PGA. Partial modification of the enzyme using [14C]-phenylglyoxal leads to a decrease in bothV max,A 0.5 and a decrease in the ability of the 3PGA to stimulate the enzyme's activity. Modification increased the enzyme's susceptibility to inhibition by Pi and completely abolished the cooperative binding of Pi seen in the unmodified enzyme in the presence of 3PGA. Thus, phenylglyoxal appears to interfere, with the normal allosteric regulation of ADPglucose pyrophosphorylase from spinach leaf. Greater than 90% of the enzyme's activity is lost when 7.2 mol [14C]-phenylglyoxal are bound per mole of tetramer and this label is present in both the larger and small subunits. In addition, inactivation appears to involve two different arginine residues having different rates of modification.  相似文献   

15.
Sepabeads-EP (a new epoxy support) has been utilized to immobilize-stabilize the enzyme penicillin G acylase (PGA) via multipoint covalent attachment. These supports are very robust and suitable for industrial purposes. Also, the internal geometry of the support is composed by cylindrical pores surrounded by the convex surfaces (this offers a good geometrical congruence for reaction with the enzyme), and it has a very high superficial density of epoxy groups (around 100 micromol/mL). These features should permit a very intense enzyme-support interaction. However, the final stability of the immobilized enzyme is strictly dependent on the immobilization protocol. By using conventional immobilization protocols (neutral pH values, nonblockage of the support) the stability of the immobilized enzyme was quite similar to that achieved using Eupergit C to immobilize the PGA. However, when using a more sophisticated three-step immobilization/stabilization/blockage procedure, the Sepabeads derivative was hundreds-fold more stable than Eupergit C derivatives. The protocol used was as follows: (i) the enzyme was first covalently immobilized under very mild experimental conditions (e.g., pH 7.0 and 20 degrees C); (ii) the already immobilized enzyme was further incubated under more drastic conditions (higher pH values, long incubation periods, etc.) in order to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; (iii) the remaining epoxy groups of the support were blocked with very hydrophilic compounds to stop any additional interaction between the enzyme and the support. This third point was found to be critical for obtaining very stable enzymes: derivatives blocked with mercaptoethanol were much less stable than derivatives blocked with glycine or other amino acids. This was attributed to the better masking of the hydrophobicity of the support by the amino acids (having two charges).  相似文献   

16.
In this work, we have used supports activated with m-amino-phenylboronic groups to “reversibly” immobilize proteins under very mild conditions. Most of the proteins contained in a crude extract from E. coli could be immobilized on Eupergit C-250 L activated with phenylboronic and then fully desorbed from the support by using mannitol or SDS. This suggested that the immobilization of the proteins on these supports was not only via sugars interaction, but also by other interaction/s, quite unspecific, that might be playing a key role in the immobilization of the proteins. Penicillin acylase from E. coli (PGA) was also immobilized in Eupergit C activated with m-amino-phenylboronic groups. The enzyme could be fully desorbed with mannitol immediately after being immobilized on the support. However, longer incubation times of the immobilized preparation caused a reduction of protein elution from the boronate support in presence of mannitol. Moreover, these immobilized preparations showed a higher stability in the presence of organic solvents than the soluble enzyme; the stability also improved when the incubation time was increased (to a factor of 100). By desorbing the weakest bound enzyme molecules, it was possible to correlate adsorption strength with stabilization; therefore, it seems that this effect was due to the rigidification of the enzyme via multipoint attachment on the support.  相似文献   

17.
Immobilization of enzymes and proteins on activated supports permits the simplification of the reactor design and may be used to improve some enzyme properties. In this sense, supports containing epoxy groups seem to be useful to generate very intense multipoint covalent attachment with different nucleophiles placed on the surface of enzyme molecules (e.g., amino, thiol, hydroxyl groups). However, the intermolecular reaction between epoxy groups and soluble enzymes is extremely slow. To solve this problem, we have designed "tailor-made" heterofunctional epoxy supports. Using these, immobilization of enzymes is performed via a two-step process: (i) an initial physical or chemical intermolecular interaction of the enzyme surface with the new functional groups introduced on the support surface and (ii) a subsequent intense intramolecular multipoint covalent reaction between the nucleophiles of the already immobilized enzyme and the epoxy groups of the supports. The first immobilization may involve different enzyme regions, which will be further rigidified by multipoint covalent attachment. The design of some heterofunctional epoxy supports and the performance of the immobilization protocols are described here. The whole protocol to have an immobilized and stabilized enzyme could take from 3 days to 1 week.  相似文献   

18.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

19.
Penicillin G acylase (PGA) from Kluyvera citrophila immobilized on Amberzyml was used for enantioselective hydrolysis of N-phenylacetylated-dl-tert-leucine (N-Phac-dl-Tle) to produce l-tert-leucine (l-Tle). The effects of various organic cosolvents on hydrolysis of N-Phac-dl-Tle have been investigated in aqueous-cosolvent medium. It was founded that the rate of PGA-catalyzed reaction was significantly affected by the presence of 2% (v/v) organic cosolvent concentration. The initial rate fell with increasing logP of the cosolvent, but for logP values less than −0.24 the rate was faster than in purely aqueous medium. Additionally, the relative rate increases with the increase of dielectric constant (ε) of organic cosolvents. The yields of l-Tle in all aqueous-cosolvent systems were above 95% with the enantiomeric excess (ee) of >99%.  相似文献   

20.
The surface carboxylic groups of penicillin G acylase and glutaryl acylase were chemically aminated in a controlled way by reaction with ethylenediamine via the 1-ethyl-3-(dimethylamino-propyl) carbodiimide coupling method. Then, both proteins were immobilized on glyoxyl agarose. In both cases, the immobilization of the chemically modified enzymes improved the enzyme stability compared to the stability of the immobilized but non-modified enzyme (by a four-fold factor in the case of PGA and a 20-fold factor in the case of GA). The chemical modification presented a deleterious effect on soluble enzyme stability. Therefore, the improved stability should be related to a higher multipoint covalent attachment, involving both the lysine amino groups and also the new amino groups chemically introduced on the enzyme. Moreover, the lower pK(a) of the new amino groups permitted to immobilize the enzyme under milder conditions. In fact, the aminated proteins could be immobilized even at pH 9, while the non-modified enzymes could only be immobilized at pH over 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号