首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To explore the protective effect of exercise training on the injury of myocardium tissues induced by streptozotocin (STZ) in diabetic rats and the relationship with endoplasmic reticulum stress (ERS), the male sprague-dawley (SD) rats were fed with high-fat and high-sugar diet for 4 weeks, followed by intraperitoneal injection of STZ, 40 mg/kg, to establish a diabetes model, and then 10 rats were randomly selected as diabetes mellitus (DM) controls and 20 eligible diabetic rats were randomized into two groups: low-intensity exercise training (n = 10) and high-intensity exercise training (n = 10). After 12 weeks of exercise training, rats were killed and serum samples were used to determine cardiac troponin-I (cTn-I). Myocardial tissues were sampled for morphological analysis to detect myocardial cell apoptosis, and to analyze protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12. Different intensities (low and high) significantly reduced serum cTn-I levels compared with the DCM group (p < 0.01), and significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Hematoxylin and eosin and Masson staining indicated that exercise training could attenuate myocardial apoptosis. Additionally, exercise training significantly reduced GRP78, CHOP, and cleaved caspase-12 protein expression in an intensity-dependent manner. These findings suggest that exercise appeared to ameliorate diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in diabetic rats.  相似文献   

2.
Accumulating evidence suggests that inflammatory processes are involved in the development of diabetic nephropathy (DN). However, there are no effective interventions for inflammation in the diabetic kidneys. Here, we tested the hypothesis that Astragaloside IV(AS-IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bge, ameliorates DN in streptozotocin (STZ)-induced diabetic rats through anti-inflammatory mechanisms. Diabetes was induced with STZ (65 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats were divided into three groups (n = 8/each group), namely, diabetic rats, diabetic rats treated with AS-IV at 5 and 10 mg kg?1 d?1, p.o., for 8 weeks. The normal rats were chosen as nondiabetic control group (n = 8). The rats were sacrificed 10 weeks after induction of diabetes. AS-IV ameliorated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. Renal NF-κB activity, as wells as protein and mRNA expression were increased in diabetic kidneys, accompanied by an increase in mRNA expression and protein content of TNF-α, MCP-1 and ICAM-1 in kidney tissues. The α1-chain type IV collagen mRNA was elevated in the kidneys of diabetic rats. All of these abnormalities were partially restored by AS-IV. AS-IV also decreased the serum levels of TNF-α, MCP-1 and ICAM-1 in diabetic rats. These findings suggest that AS-IV, a novel anti-inflammatory agent, attenuated DN in rats through inhibiting NF-κB mediated inflammatory genes expression.  相似文献   

3.
The present study was hypothesized to investigate the hepatoprotective nature of resveratrol in averting hyperglycemia-mediated oxidative stress by measuring extent of oxidant stress and levels of proinflammatory cytokines and antioxidant competence in the hepatic tissues of streptozotocin–nicotinamide-induced diabetic rats. After the experimental period of 30 days, the pathophysiological markers such as serum bilirubin and hepatic aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were studied in addition to hepatic TNF-α, IL-1β, IL-6, NF-κB p65 and nitric oxide (NO) levels in control and experimental groups of rats. The levels of vitamin C, vitamin E and reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were determined in the liver tissues. Extent of oxidative stress was also assessed by hepatic lipid peroxides, hydroperoxides and protein carbonyls. A portion of liver was processed for histological and ultrastructural studies. Oral administration of resveratrol (5 mg/kg b.w.) to diabetic rats showed a significant decline in hepatic proinflammatory cytokines and notable attenuation in hepatic lipid peroxides, hydroperoxides and protein carbonyls. The diminished activities of hepatic enzymic antioxidants as well as the decreased levels of hepatic non-enzymic antioxidants of diabetic rats were reverted to near normalcy by resveratrol administration. Moreover, the histological and ultrastructural observations evidenced that resveratrol effectively rescues the hepatocytes from hyperglycemia-mediated oxidative damage without affecting its cellular function and structural integrity. The findings of the present investigation demonstrated the hepatocyte protective nature of resveratrol by attenuating markers of hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic tissues of diabetic rats.  相似文献   

4.
Regulation of DJ1 is associated with a number of human diseases. To determine the involvement of DJ1 in progression of diabetes in a gender‐dependent manner, we investigated its tissue‐specific expression in streptozotocin (STZ)‐induced diabetic male and female rats in this study. In animal experiments, females showed greater susceptibility towards developing diabetes because of lower insulin secretion and higher blood glucose levels as compared to male diabetic rats upon exposure to STZ. Immunoblotting confirmed sexually dimorphic regulation of DJ1 in various metabolic tissues such as the liver, pancreas and skeletal muscle. Immunofluorescence analysis revealed the location as well as reinforced the gender‐dependent expression of DJ1 in hepatic tissue. Co‐immunoprecipitation assay identified several interacting proteins with DJ1 whose functions were shown to be involved in various metabolic pathways viz. antioxidative and stress defence system, protein and methionine metabolism, nitrogen metabolism, urea metabolism, etc. Using GeneMANIA, a predictive web interface for gene functions, we showed for the first time that DJ1 may regulate T1DM via the JNK1 pathway, suggesting DJ1 interacts with other proteins from various metabolic pathways. We anticipate that the current data will provide insights into the aetiology of T1DM.  相似文献   

5.
Cyclooxygenase (COX), which have the isoforms of COX-1 and COX-2, is the key enzyme of prostaglandins biosynthesis. Especially, COX-2 is induced in inflammatory disease such as Diabetes Mellitus (DM). Resveratrol (RSV), a natural antioxidant, has a beneficial role in prevention of inflammatory disease. We investigated the changes of COX-1 and COX-2 mRNA expression and protein level in diabetic rat kidney after RSV treatment. Three months-old, 44 Wistar albino male rats, which were divided into six groups such as control group, sodium citrate buffer (sham control) group, diabetic group (DM), Dimethyl Sulfoxide induced control group, RSV treated sham control group (RSV) and RSV treated diabetic group (DM + RSV) were used for the study. Experimental diabetes was induced by intraperitoneal injection of 55 mg/kg Streptozotocin. After the induction of chronic diabetes 10 mg/kg per day RSV was administered intraperitoneally for 4 weeks. In this study. RSV has no significant effect on COX-1 mRNA expression in diabetic rat kidney (P > 0.05). Immunohistochemical study showed that COX-1 expression was slightly inhibited in RSV group and was not significantly supressed in DM + RSV group. When comparing control and treated groups, there were no significant differences in COX-2 mRNA or protein levels (P > 0.05). In conclusion, our results indicate that resveratrol do not significantly affect COX gene and protein expression. Therefore, different therapy strategies such as combination with other antidiabetic drugs may tried in STZ induced animal model for reducing diabetic symptoms and altering COX-1 and COX-2 mRNA or protein levels.  相似文献   

6.
Resveratrol (RSV) has a beneficial role in the prevention of diabetes and alleviates some diabetic complications, such as cardiomyopathy. We investigated cyclooxygenase-1 (COX-1), COX-2, nuclear factor κB (NF-κB), matrix metalloproteinase-9 (MMP-9), and sirtuin 1 (SIRT1) mRNA expression levels in heart tissue after RSV treatment in streptozotocin (STZ)-induced diabetic rats. After induction of chronic diabetes with STZ, 10 mg RSV/kg per day was administered to DM and DM+RSV groups for four weeks. At the end of the experiment, all rats were sacrificed and heart tissues were stored at -80°C; mRNA expression levels of COX-1, COX-2, NF-κB, MMP-9, and SIRT1 genes were analyzed with quantitative real-time PCR. We did not find any significant effect of RSV on MMP-9, COX-1, COX-2, or NF-κB mRNA levels among the groups. However, SIRT1 mRNA levels decreased in the DM group compared to controls and increased in the DM+RSV group when compared to the DM group. SIRT1 is activated by RSV treatment in diabetic heart tissue. Activation of SIRT1 by RSV may lead to a new therapeutic approach for diabetic heart tissue. We conclude that RSV treatment can alleviate heart dysfunction by inhibiton of inflammatory gene expression such as SIRT1.  相似文献   

7.
Abstract

Objectives

This study was focused on the monitoring how the anti-inflammatory substance, N1-methylnicotinamide (MNA), could influence oxidation and glycooxidation stress markers in rats under conditions of streptozotocin (STZ)-induced diabetes mellitus.

Methods

Diabetes mellitus was induced in 60 male Wistar rats by intraperitoneal injection of STZ and after 7 days diabetic animals were allocated to five groups according to the dose of MNA administered for 7 weeks. The degree of DNA damage in lymphocytes, as well as advanced glycation endproducts (AGEs), protein carbonyls, lipid peroxides, and total antioxidant capacity (TEAC) in plasma were measured.

Results

Glycation damage to proteins (represented by AGEs level) was significantly increased in all diabetic groups compared to untreated non-diabetic animals. MNA did not affect TEAC of plasma in any group of diabetic rats. Supplementation of diabetic rats with MNA at the dose of 200 mg/kg resulted in decreased protein carbonyls (from 0.0818 ± 0.0091 to 0.0558 ± 0.0044 nmol/mg proteins; P < 0.05, n = 15) and DNA oxidation, reflected by the levels of 8-oxoG (0.6302 ± 0.085 vs. 0.9213 ± 0.108 8-oxoG/106 G; P < 0.05, n = 15), compared to untreated diabetic animals.

Discussion

Our results demonstrated that MNA at suitable concentrations could influence oxidative modifications of proteins and DNA.  相似文献   

8.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

9.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

10.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The hypoglycemic effect of the crude extracellular polysaccharides (EPS) produced from submerged mycelial culture of an edible mushroom Laetiporus sulphureus var. miniatus in streptozotocin (STZ)-induced diabetic rat was investigated. Hypoglycemic effect of EPS was evaluated in STZ-induced diabetic rats, and its possible mechanism was suggested by the results of western blot analysis and immunohistochemical staining. The results revealed that orally administrated EPS, when given 48 h after STZ treatment exhibited an excellent hypoglycemic effect, lowering the average plasma glucose level in EPS-fed rats to 43.5% of STZ-treated rats. The plasma levels of total cholesterol and triglyceride were significantly increased upon STZ treatment and they were markedly reduced by oral administration of EPS to near-normal levels. The results of immunohistochemical staining of the pancreatic tissues showed that EPS treatment considerably increased the insulin antigenesity of diabetic islet β-cells, suggesting the possibility of β-cell proliferation or regeneration by EPS therapy. Moreover, immunoblotting study revealed that protein levels of iNOS was increased and SOD2, catalase, GPx were significantly increased after EPS treatments, suggesting alleviated oxidative stress mediated by STZ. Orally administrated EPS exhibited considerable hypoglycemic effect in STZ-induced diabetic rats and that these EPS may be useful for the management of diabetes mellitus.  相似文献   

12.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

13.
The present study was conducted to investigate the effects of chromium histidinate (CrHis) against experimentally induced type II diabetes and on chromium (Cr), zinc (Zn), selenium (Se), manganese (Mn), iron (Fe), and copper (Cu) in serum, liver, and kidney of diabetic rats. The male Wistar rats (n = 60, 8 weeks old) were divided into four groups. Group I received a standard diet (12% of calories as fat); group II were fed standard diet and received CrHis (110 mcg CrHis/kg body weight per day); group III received a high-fat diet (HFD; 40% of calories as fat) for 2 weeks and then were injected with streptozotocin (STZ) on day 14 (STZ, 40 mg/kg i.p.; HFD/STZ); group IV were treated as group III (HFD/STZ) but supplemented with 110 mcg CrHis/kg body weight per day. The mineral concentrations in the serum and tissue were determined by atomic absorption spectrometry. Compared to the HFD/STZ group, CrHis significantly increased body weight and reduced blood glucose in diabetic rats (p < 0.001). Concentrations of Cr, Zn, Se, and Mn in serum, liver, and kidney of the diabetic rats were significantly lower than in the control rats (p < 0.0001). In contrast, higher Fe and Cu levels were found in serum and tissues from diabetic versus the non-diabetic rats (p < 0.001). Chromium histidinate supplementation increased serum, liver, and kidney concentrations of Cr and Zn both in diabetic and non-diabetic rats (p < 0.001). Chromium supplementation increased Mn and Se levels in diabetic rats (p < 0.001); however, it decreased Cu levels in STZ-treated group (p < 0.001). Chromium histidinate supplementation did not affect Fe levels in both groups (p > 0.05). The results of the present study conclude that supplementing Cr to the diet of diabetic rats influences serum and tissue Cr, Zn, Se, Mn, and Cu concentrations.  相似文献   

14.
This study focuses on two inflammatory diseases, viz., “diabetes mellitus (DM)” that causes serious complications such as retinopathy, nephropathy, and neuropathy, and “ischemic colitis” which is evoked by DM. Ischemic colitis originates from the reduction in mesenteric blood flow to the colon with existence of the occlusive or non-occlusive reasons. Our study objective was to provide early diagnostic approach for ischemic colitis in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were divided into four groups: (i) control use of 0.1 M citrate buffer, the solvent of streptozotocin (C), (ii). induced ischemia (I), (iii) rats subjected to 60 mg/kg STZ intraperitoneally to induce type 1 diabetes (D) (48 h after STZ injection, blood glucose levels >200 mg/dl were considered as diabetic), and (iv) diabetic rats subjected to intestinal ischemia (D+I). The third diabetic group (D) was not operated. At the end of the experimental period, rats were sacrificed, C-reactive protein (CRP) and calprotectin levels were measured in the serum and colon tissue specimens. Tissue specimens were also analyzed histologically. We found that serum and colon calprotectin levels were elevated in the D+I group compared to the D and/or I group alone, but relatively calprotectin levels increased in I as compared to C group in colon tissues. CRP levels were significantly increased with ischemic colitis in diabetes, while colon CRP levels were decreased. These results provide evidence for the existence of inflammation in the STZ-induced diabetic rats with ischemic colitis. In conclusion, our measurements of serum calprotectin levels of STZ-induced diabetic rats with ischemic colitis provide a practical approach for an early diagnosis of ischemic colitis. Furthermore, these biochemical analyses correlate well with the histopathologic findings of STZ-induced diabetic rats with ischemic colitis. Future studies would be desirable to further strengthen the role of calprotectin in the early diagnosis of ischemic colitis in diabetics clinical settings.  相似文献   

15.
Hepatic ABC efflux transporters control the cellular uptake (in basolateral membranes) and excretion (in apical membranes) of many substrates. Since type‐1 diabetes mellitus (T1DM) is associated with altered hepatobiliary excretion of many endogenous and exogenous substances, we examined key hepatic ABC transporters and levels of the endogenous substrate glutathione in rats with acute streptozotocin‐induced T1DM. Renal transporters and inflammatory markers were also examined. Abcb1, Abcc1–4, and Abcg2 were measured using qRT‐PCR. Glutathione was measured in liver tissue, plasma, and urine. Inflammatory markers, including C‐reactive protein (CRP), were measured in plasma via ELISA. In diabetic rats, Abcb1a, Abcc2, and Abcg2 (apical) were decreased, while Abcc4 (basolateral) was increased. Abcb1a and Abcc2 inversely correlated with plasma CRP. Diabetic and control rats exhibited similar hepatic glutathione, but levels in diabetic plasma were lower. When standardized to urinary output, diabetic rats excreted 6.7‐fold more glutathione in urine than controls. Renal transporter levels were normal in diabetic rats. Results show apical transporters involved in hepatobiliary excretion are downregulated in T1DM, possibly through an inflammation‐mediated process. Findings suggest that there may be a vectorial shift from hepatic to renal excretion for some substrates in T1DM.  相似文献   

16.
In normal rats we showed that glucocorticoids participate in the downregulation of UT-A1 protein abundance in the inner medullary tip and in lowering of basal and vasopressin-stimulated facilitated urea permeability in terminal IMCDs. To examine the relevance of this response to a rat model of human disease, we studied rats with uncontrolled diabetes mellitus (DM) induced by streptozotocin (STZ), since these rats have increased corticosterone production and urea excretion. We found that at 3 days of DM, UT-A1 protein abundance is downregulated in the inner medullary tip compared to pair-fed control rats, while DM for more than 7 days caused an increase in UT-A1. To test whether adrenal steroids could be a mechanism contributing to the latter increase, we studied adrenalectomized rats (ADX), ADX rats given STZ to induce diabetes (ADX + STZ), and ADX + STZ rats receiving exogenous aldosterone or dexamethasone. In contrast to control rats, UT-A1 protein abundance was not increased by prolonged DM in the ADX rats. Aquaporin 2 (AQP2) was not increased in the inner medullas of 10-day DM rats either. However, UT-A1 protein abundance was significantly reduced in the inner medullary tips from both diabetic aldosterone-treated (40 ± 2%) and dexamethasone-treated (43 ± 2%) ADX rats compared to diabetic ADX rats without steroid replacement. AQP2 was unaffected by steroid hormone treatments. Thus, both mineralocorticoids and glucocorticoids downregulate UT-A1 protein abundance in rats with uncontrolled diabetes mellitus for 10 days. These results suggest that: 1) the increase in UT-A1 observed in DM is dependent upon having adrenal steroids present; and 2) adrenal steroids are not sufficient to enable the compensatory rise in UT-A1 to a steroid-deficient diabetic animal.  相似文献   

17.
Patel  R.  Yago  M.D.  Mañas  M.  Victoria  E.M.  Shervington  A.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):83-89
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg–1, I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg–1 urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 ± 2.42 mg dl–1 (n= 44) and >500 mg dl–1 (n= 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 ± 0.05 ul min–1 (n= 10) and 1.28 ± 0.16 ul min–1 (n= 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 ± 15.41 nM (n= 15) and 130.62 ± 17.66 nM (n= 8), respectively. CCK-8 (10–8M) induced a peak response of 436.55 ± 36.54 nM (n= 15) and 409.31 ± 34.64 nM (n= 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 ± 0.06 nM (n= 18) and 0.86 ± 0.04 nM (n= 10). In the presence of CCK-8 (10–8) [Mg2+]i in control and diabetic cells was 0.80 ± 0.05 nM (n= 18) and 0.60 ± 0.02 nM (n= 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis. (Mol Cell Biochem 261: 83–89, 2004)  相似文献   

18.
Oxidative stress plays a crucial role in the progression and development of diabetes and its complications due to chronic hyperglycemia. The present study was aimed to investigate the kidney tissue protective nature of d-pinitol, a cyclitol present in soybean, by assessing the key markers of hyperglycemia-mediated oxidative stress, proinflammatory cytokines and ultrastructural alterations in streptozotocin-induced diabetic rats. Oral administration of d-pinitol (50 mg/kg body weight/day) for 30 days to diabetic group of rats showed a significant elevation in the level of total protein and significant decline in the levels of blood urea, serum uric acid, creatinine and advanced glycation endproducts (AGEs) and kidney proinflammatory cytokines such as TNF-α, IL-1β, IL-6, NF-κB p65 subunit and nitrite. Further, d-pinitol administration elicited a significant attenuation in the activities of kidney enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and the levels of kidney non-enzymatic antioxidants such as vitamin E, vitamin C and reduced glutathione (GSH) in the diabetic group of rats, with a concomitant decline in the levels of kidney lipid peroxides, hydroperoxides and protein carbonyls. The histological and ultrastructural observations on the kidney tissues also confirmed the renoprotective nature of d-pinitol. Thus the present study demonstrated the renoprotective nature of d-pinitol by attenuating the hyperglycemia-mediated proinflammatory cytokines and antioxidant competence in kidney tissues of streptozotocin-induced diabetic rats.  相似文献   

19.
The aim of this study was designed to investigate the possible beneficial effects of Nigella sativa (NS) and thymoquinone (TQ) on histopathological changes of sciatic nerves in streptozotocin-induced diabetic rats. The rats were randomly allotted into one of four experimental groups: A (control), B (diabetic untreated), C (diabetic treated with NS) and D (diabetic treated with TQ); each group contain ten animals. B, C and D groups received streptozotocin (STZ) to induce diabetes. The rats in NS and TQ treated groups were given NS (in a dose of 400 mg/kg body weight) and TQ (50 mg/kg body weight) once a day orally by using intra-gastric intubation for 12 weeks starting 2 days after STZ injection, respectively. Blood and tissue samples were obtained for biochemical and histopathological investigation. The treatment of both NS and TQ caused a sharp decrease in the elevated serum glucose (P < 0.01, 0.05, respectively), and an increase in the lowered serum insulin concentrations (P < 0.01, 0.05, respectively), in STZ-induced diabetic rats. STZ induced a significant decrease in the area of insulin immunoreactive β-cells (P < 0.0001). NS (P < 0.001) and TQ (P < 0.01) treatment resulted in increased area of insulin immunoreactive β-cells significantly. To date, no histopathological changes of sciatic nerves in STZ induced diabetic rats by NS and TQ treatment have been reported. In this study, histologic evaluation of the tissues in diabetic animals treated with TQ and especially NS showed fewer morphologic alterations. Myelin breakdown decreased significantly after treatment with NS and TQ. The ultrastructural features of axons also showed remarkable improvement. We believe that further preclinical research into the utility of NS and TQ may indicate its usefulness as a potential treatment on peripheral neuropathy (PN) in STZ induced diabetic rats.  相似文献   

20.
Type 1 diabetes mellitus (DM1) and dysfunction of the thyroid gland (TG) are the most common endocrine diseases, which are interrelated. However, the molecular mechanisms of thyroid dysfunction in DM1 and the role of adenylyl cyclase signaling system (ACSS) in this process remain poorly understood. Typically for studying etiology and pathogenesis of thyroid diseases in DM1 the models of acute DM1 induced by high doses of streptozotocin (STZ) are used. At the same time, a suitable model for this purpose is the model of mild DM1 initiated by moderate doses of STZ, which more closely resembles human DM1. The aim of this study was a comparative study of the functional state of the thyroid gland in rats with 30-day acute DM1 induced by injection of STZ at a dose of 65 mg/kg, and in rats with 30- and 210-day mild DM1 induced by three consecutive injections of STZ at medium doses (30–40 mg/kg). For this purpose in diabetic animals the levels of thyroid hormones and TSH and the functional activity of hormone-sensitive ACSS in membranes isolated from thyroid gland were studied. It was shown that in blood of rats with acute DM1 the levels of fT4, fT3, and tT3 were decreased by 45, 23 and 19%, respectively, while the level of TSH did not change significantly. In rats with the 30-day mild DM1 the concentration of fT4 was decreased by 32%, while the levels of tT4, tT3, and TSH were similar to that in control. In rats with prolonged mild DM1 after 150 and 210 days following the first treatment with STZ the levels of tT4, fT4, and tT3 were significantly reduced, but the concentration of TSH in rats with 210-day mild DM1 was increased by 119%. The results obtained in the study of thyroid status and TSH levels in rats with prolonged mild DM1 are in good agreement with the data obtained in the study of thyroid diseases in patients with DM1. It was found that the AC basal activity in the membranes isolated from the thyroid gland of diabetic rats did not change, except for the rats with the prolonged mild DM1 where this activity was increased by 21%. In all groups of diabetic rats the decrease of AC stimulating effects of GppNHp (10?5 M) and TSH (10?8 M) was found, and in the rats with prolonged mild DM1 the AC effect of PACAP-38 (10?6 M) was also reduced. The decrease of AC effect of TSH varied among different groups of the diabetic animals: in the rats with acute DM1 this effect was reduced by 46% and in the rats with 30- and 210-day mild DM1-by 18 and 34%. Thus, it was concluded that the key cause of the thyroid resistance to TSH under conditions of DM1 is a weakening of the signal transduction generated by TSH via the ACSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号