首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DBF enzyme from the hyperthermophilic archaebacterium Sulfolobus solfataricus greatly enhances the refolding at 30°C of denatured and reduced bovine pancreatic ribonuclease (Guagliardi et al., 1992). Here we show that DBF behaves like a molecular chaperone: it affects in an ATP-dependent manner the in vitro refolding at 50°C of two thermostable dehydrogenases, an alcohol dehydrogenase and a glutamate dehydrogenase from S. solfataricus. This paper also reports the complete amino acid sequence of DBF. The role of molecular chaperones from thermophilic microorganisms in applied biocatalysis is discussed.  相似文献   

2.
We found that a cold acclimation protein from an ice-nucleating bacterium, Patoea ananas KUIN-3, has refolding activity on frozen denatured protein. Based on a SDS-PAGE analysis, we confirmed that the cold shock-treated cells of strain KUIN-3 could produce some cold acclimation proteins that inhibit their syntheses by the addition of chloramphenicol during the cold acclimation. Among such proteins, Hsc25 had refolding activity similar to GroELS. Hsc25 was purified to apparent homogeneity by (NH4)2SO4 precipitation and some chromatographies. The purified Hsc25 was composed of 8 subunits of 25,000 each with a molecular mass of 200,000 and had refolding activity against denatured enzymes, which were denatured by heat-treatment at 100°C, cryopreservation at -20°C, or guanidine hydrochloride, in a manner similar to GroELS. The N-terminal sequence of Hsc25 was Met-Arg-Ala-Ser-Thr-Tyr-His-Ala-Ala-Arg-. Furthermore, Hsc25 had a high level of activity at low temperature (12°C). Also, the dissociation constants, KD (M) as the binding specificity for enolase, mutarotase, isocitrate dehydrogenase, and lactate dehydrogenase were 1.82×10-10, 4.35×10-9, 8.98×10-12, and 3.05×10-11, respectively. The affinity of Hsc25 for frozen danatured enzymes was higher than the affinity for heat denatured enzymes when compared with the affinity of GroEL. These results are the first report on the characterization of a purified chaperon that was induced by cold acclimation.  相似文献   

3.
An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.  相似文献   

4.
Summary Bacillus stearothermophilus was adapted to grow at 55°C and 37°C in a complex medium with almost equivalent yields in cell mass. In both temperature ranges the maximum specific growth rates (μmax) were identical. Cellular extracts of this bacterium showed remarkable differences in the activity levels of several enzymes, depending on the respective growth temperature. High activities of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase were observed in bacteria from thermophilic cultures (55°C) and the respiratory quotient exceeded 1.0. Under anaerobic conditions at 55°C μmax was the same as in aerobic cultures. No alcohol dehydrogenase was detected in cells from mesophilic cultures (37°C), however, and the level of glyceraldehyde-3-phosphate dehydrogenase was also extremely low under mesophilic conditions. Succinate dehydrogenase and isocitrate dehydrogenase activity appeared to be higher in bacteria grown at 37°C; the resspiratory quotient was always lower than 1.0. At 37°C, acetoin formation was observed regularly, a fermentation product which was never detected in 55°C-cultures. Under anaerobic conditions at 37°C a very low growth rate was found. When adapted to grow at 37°C or 55°C,B. stearothermophilus is apparently able to use different catabolic systems.  相似文献   

5.
A thermostable l-malate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was isolated and characterized, and its gene was cloned and sequenced. The enzyme is a homodimer with a molecular mass of 70 kDa and catalyzes preferentially the reduction of oxaloacetic acid with NADH. A. fulgidus l-malate dehydrogenase was stable for 5 h at 90° C, and the half-life at 101° C was 80 min. Thus, A. fulgidus l-malate dehydrogenase is the most thermostable l-malate dehydrogenase characterized to date. Addition of K2HPO4 (1 M) increased the thermal stability by 40%. The primary structure shows a high similarity to l-lactate dehydrogenase from Thermotoga maritima and gram-positive bacteria, and to l-malate dehydrogenase from the archaeon Haloarcula marismortui and other l-lactate-dehydrogenase-like l-malate dehydrogenases. Received: 20 November 1997 / Accepted: 28 February 1997  相似文献   

6.
The group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 (PhCPN) and its functional cooperation with the cognate prefoldin were investigated. PhCPN existed as a homo-oligomer in a double-ring structure, which protected the citrate synthase of a porcine heart from thermal aggregation at 45°C, and did the same on the isopropylmalate dehydrogenase (IPMDH) of a thermophilic bacterium, Thermus thermophilus HB8, at 90°C. PhCPN also enhanced the refolding of green fluorescent protein (GFP), which had been unfolded by low pH, in an ATP-dependent manner. Unexpectedly, functional cooperation between PhCPN and Pyrococcus prefoldin (PhPFD) in the refolding of GFP was not observed. Instead, cooperation between PhCPN and PhPFD was observed in the refolding of IPMDH unfolded with guanidine hydrochloride. Although PhCPN alone was not effective in the refolding of IPMDH, the refolding efficiency was enhanced by the cooperation of PhCPN with PhPFD.  相似文献   

7.
《Process Biochemistry》2014,49(1):54-60
The application of high hydrostatic pressure (HHP) impairs electrostatic and hydrophobic intermolecular interactions, promoting the dissociation of recombinant inclusion bodies (IBs) under mild conditions that favor subsequent protein refolding. We demonstrated that IBs of a mutant version of green fluorescent protein (eGFP F64L/S65T), produced at 37 °C, present native-like secondary and tertiary structures that are progressively lost with an increase in bacterial cultivation temperature. The IBs produced at 37 °C are more efficiently dissociated at 2.4 kbar than those produced at 47 °C, yielding 25 times more soluble, functional eGFP after the lower pressure (0.69 kbar) refolding step. The association of a negative temperature (−9 °C) with HHP enhances the efficiency of solubilization of IBs and of eGFP refolding. The rate of refolding of eGFP as temperature increases from 10 °C to 50 °C is proportional to the temperature, and a higher yield was obtained at 20 °C. High level refolding yield (92%) was obtained by adjusting the temperatures of expression of IBs (37 °C), of their dissociation at HHP (−9 °C) and of eGFP refolding (20 °C). Our data highlight new prospects for the refolding of proteins, a process of fundamental interest in modern biotechnology.  相似文献   

8.
The xylitol dehydrogenase gene (xdh) of Bacillus pallidus was cloned and overexpressed in Escherichia coli using pQE60 vector, for the first time. The open reading frame of 759 bp encoded a 253 amino acid protein with a calculated molecular mass of 27,333 Da. The recombinant xylitol dehydrogenase (XDH) was purified to homogeneity by three-step column chromatography, producing a single SDS–PAGE band of 28 kDa apparent molecular mass. The enzyme exhibited maximal activity at 55 °C in glycine-NaOH buffer pH 11.0, with 66% of initial enzyme activity retained after incubation at 40 °C for 1 h. In further application of the recombinant bacterium to L-xylulose production from xylitol (initial concentration 5%) using a resting cell reaction, 35% L-xylulose was produced within 24 h. This result indicates that this recombinant XDH is applicable in the large-scale production of L-xylulose.  相似文献   

9.
A structural analysis of two lactate dehydrogenase M4 protein forms has been performed. These structures are the protein products of two lactate dehydrogenase gene (LDH-A) copies in the weatherfish Misgurnus fossilis genome after thermal adaptation (acclimation) to 5°C and 18°C. The localization of three earlier identified amino acid substitutions (Gly214Val, Leu304Ile, Asp312Glu) has been determined, and the molecular dynamics simulation and computer modeling of two forms of the enzyme from skeletal muscles LDH-M4 have been carried out. After molecular dynamics trajectory calculations carried out at 5, 18, and 25°C, the intersubunit distances for all structures used in calculations have been determined. It has been found that the Gly214Val substitution localized in the intersubunit region leads to a new intersubunit interaction, which plays a role in the stabilization of tetrameric enzyme structure after the adaptation to 18°C.  相似文献   

10.
Thermotoga maritima TM0298 is annotated as an alcohol dehydrogenase, yet it shows high identity and similarity to mesophilic mannitol dehydrogenases. To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was most active on fructose and mannitol, making it the first known hyperthermophilic mannitol dehydrogenase. T. maritima mannitol dehydrogenase (TmMtDH) is optimally active between 90 and 100 °C and retains 63% of its activity at 120 °C but shows no detectable activity at room temperature. Its kinetic inactivation follows a first-order mechanism, with half-lives of 57 min at 80 °C and 6 min at 95 °C. Although TmMtDH has a higher V max with NADPH than with NADH, its catalytic efficiency is 2.2 times higher with NADH than with NADPH and 33 times higher with NAD+ than with NADP+. This cofactor specificity can be explained by the high density of negatively charged residues (Glu193, Asp195, and Glu196) downstream of the NAD(P) interaction site, the glycine motif. We demonstrate that TmMtDH contains a single catalytic zinc per subunit. Finally, we provide the first proof of concept that mannitol can be produced directly from glucose in a two-step enzymatic process, using a Thermotoga neapolitana xylose isomerase mutant and TmMtDH at 60 °C.  相似文献   

11.
A thermostable homodimeric isocitrate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was purified and characterized. The mol. mass of the isocitrate dehydrogenase subunit was 42 kDa as determined by SDS-PAGE. Following separation by SDS-PAGE, A. fulgidus isocitrate dehydrogenase could be renatured and detected in situ by activity staining. The enzyme showed dual coenzyme specificity with a high preference for NADP+. Optimal temperature for activity was 90° C or above, and a half-life of 22 min was found for the enzyme when incubated at 90° C in a 50 mM Tricine-KOH buffer (pH 8.0). Based on the N-terminal amino acid sequence, the gene encoding the isocitrate dehydrogenase was cloned. DNA sequencing identified the icd gene as an open reading frame encoding a protein of 412 amino acids with a molecular mass corresponding to that determined for the purified enzyme. The deduced amino acid sequence closely resembled that of the isocitrate dehydrogenase from the archaeon Caldococcus noboribetus (59% identity) and bacterial isocitrate dehydrogenases, with 57% identity with isocitrate dehydrogenase from Escherichia coli. All the amino acid residues directly contacting substrate and coenzyme (except Ile-320) in E. coli isocitrate dehydrogenase are conserved in the enzyme from A. fulgidus. The primary structure of A. fulgidus isocitrate dehydrogenase confirmes the presence of Bacteria-type isocitrate dehydrogenases among Archaea. Multiple alignment of all the available amino acid sequences of di- and multimeric isocitrate dehydrogenases from the three domains of life shows that they can be divided into three distinct phylogenetic groups. Received: 6 February 1997 / Accepted: 12 June 1997  相似文献   

12.
Yang  Hong  Zhang  Yueqi  Li  Xinxin  Bai  Yingguo  Xia  Wei  Ma  Rui  Luo  Huiying  Shi  Pengjun  Yao  Bin 《Applied microbiology and biotechnology》2018,102(21):9183-9192

A new cellulase (TaCel45) of glycoside hydrolase family 45 was identified in the thermophilic fungus Thielavia arenaria XZ7 and was successfully expressed in Pichia pastoris. The specific activities of TaCel45 towards lichenin, sodium carboxymethylcellulose (CMC-Na), and barley β-glucan were 769, 498, and 486 U/mg protein, respectively, which are higher than the values for all other reported GH45 cellulases. TaCel45 had maximum activity at pH 5.0–6.0 and 60–65 °C with barley β-glucan and CMC-Na as substrates and had a melting temperature (Tm) of 68.4 °C. However, TaCel45 exhibited extraordinary thermostability at 90 and 100 °C, retaining more than 70 and 45% of its activity after a 1-h incubation, respectively. Seven mutants (C11S, C12S, C16S, C31S, C171S, C193S, and C203S) were then constructed to investigate the effects of each disulfide bond on the structure, activity, and stability of TaCel45. As a result, six disulfide bonds (C11-C136, C16-C87, C31-C57, C88-C203, C90-C193, and C160-Cy171) were found to be indispensable for the folding, secretion, and activity of TaCel45, while C12-C48 was critical for thermal adaptation and refolding. The mutant C12S showed decreased optimal temperature and Tm values of 50 and 60.2 °C, respectively, and retained less than 50% of the thermal refolding ability of the wild type. Overall, this study demonstrated that disulfide bonds play a vital role in the folding and refolding capability and thermostability of this GH45 cellulase.

  相似文献   

13.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It uses carbohydrates and peptides as carbon and energy sources to produce acetate, CO2, H2, l-alanine and ethanol as end products. Alcohol dehydrogenase activity was found to be present in the soluble fraction of T. hypogea. The alcohol dehydrogenase was purified to homogeneity, which appeared to be a homodimer with a subunit molecular mass of 40 ± 1 kDa revealed by SDS-PAGE analyses. A fully active enzyme contained iron of 1.02 ± 0.06 g-atoms/subunit. It was oxygen sensitive; however, loss of enzyme activity by exposure to oxygen could be recovered by incubation with dithiothreitol and Fe2+. The enzyme was thermostable with a half-life of about 10 h at 70°C, and its catalytic activity increased along with the rise of temperature up to 95°C. Optimal pH values for production and oxidation of alcohol were 8.0 and 11.0, respectively. The enzyme had a broad specificity to use primary alcohols and aldehydes as substrates. Apparent K m values for ethanol and 1-butanol were much higher than that of acetaldehyde and butyraldehyde. It was concluded that the physiological role of this enzyme is likely to catalyze the reduction of aldehydes to alcohols.  相似文献   

14.
Aims: To isolate, clone and express a novel phytase gene (phy) from Bacillus sp. in Escherichia coli; to recover the active enzyme from inclusion bodies; and to characterize the recombinant phytase. Methods and Results: The molecular weight of phytase was estimated as 40 kDa on SDS-polyacrylamide gel electrophoresis. A requirement of Ca2+ ions was found essential both for refolding and activity of the enzyme. Bacillus phytase exhibited a specific activity of 16 U mg−1 protein; it also revealed broad pH and temperature ranges of 5·0 to 8·0 and 25 to 70°C, respectively. The Km value of phytase for hydrolysis of sodium phytate has been determined as 0·392 mmol l−1. The activity of enzyme has been inhibited by EDTA. The enzyme exhibited ample thermostability upon exposure to high temperatures from 75 to 95°C. After 9 h of cultivation of transformed E. coli in the bioreactor, the cell biomass reached 26·81 g wet weight (ww) per l accounting for 4289 U enzyme activity compared with 1·978 g ww per l producing 256 U activity in shake-flask cultures. In silico analysis revealed a β-propeller structure of phytase. Conclusions: This is the first report of its kind on the purification and successful in vitro refolding of Bacillus phytase from the inclusion bodies formed in the transformed E. coli. Significance and Impact of the Study: Efficient and reproducible protocols for cloning, expression, purification and in vitro refolding of Bacillus phytase enzyme from the transformed E. coli have been developed. The novel phytase, with broad pH and temperature range, renaturation ability and substrate specificity, appears promising as an ideal feed supplement. Identification of site between 179th amino acid leucine and 180th amino acid asparagine offers scope for insertion of small peptides/domains for production of chimeric genes without altering enzyme activity.  相似文献   

15.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

16.
Heat shock induced by an increase in temperature from 30°C to 47°C led to changes in protein synthesis in wing pads of the fifth larval instar of Locusta migratoria. Synthesis of heat shock proteins in the molecular weight range of 85,000, 70,000 and 18,000–22,000 was first detected at a threshold temperature of 45°C and was found to be highest at 47°C. A marked decline in the synthesis of many other proteins was also evident at 47°C. Recovery of general protein synthesis was observed when wing pads were shifted back to 30°C after a 2-h heat shock at 47°C. Heat shock protein patterns in Locusta and Drosophila were compared.  相似文献   

17.
Abstract

“Ene”-reductase, from the Old Yellow Enzyme (OYE) family, is known to catalyze the asymmetric reduction of the olefinic bond of α,β-unsaturated carbonyl compounds through trans-hydrogenation. Here we report the cloning, expression, and characterization of a novel OYE enzyme named “BcOYE” from the thermophilic strain, Bacillus coagulans WCP10-4. The enzyme was heterologously overexpressed in Escherichia coli with a high yield (84 mg/mL) in shaken flasks. The recombinant BcOYE was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was most active at 50°C and pH of 7.0, and showed higher activity toward an array of ketones and maleimides. No activity was detected toward 2-cyclohexen-1-one. At 50°C, we demonstrated that BcOYE can produce the (R)-enantiomer of 2-methylcyclohexanone with high yield and optical purity more rapidly than at lower temperature (30°C). We also successfully developed a coenzyme regeneration system with glucose-6-phosphate dehydrogenase isolated from the same thermophilic strain.  相似文献   

18.
The effects of eight germination temperatures from 10°C to 35°C on germination and dehydrogenase activities of two soybean (Glycine max [L.] Merr.) cultivars were investigated after 48 h of seedling growth. Axis fresh weights of cv. Chippewa increased as germination temperature increased from 10°C to 35°C. In contrast, axis fresh weights for the cv. Wells increased more slowly with increasing temperature and reached a maximum at c. 25°C. In general, in vitro activities of glutamate dehydrogenase (GDH), NADP-isocitrate dehydrogenase (NADP-ICDH), and malate dehydrogenase (MDH) from the axes of cv. Chippewa correlated well with increases in axis fresh weights. GDH and MDH activities from axes of the cv. Wells also reflected increases in axis fresh weights although the correlation was not as evident as for the cv. Chippewa. NADP-ICDH activity from ‘Wells’ axes was highest at 35°C even though germination was poor at this temperature. GDH and MDH activities from cotyledons of both cultivars were not correlated with axis weight increases. No GDH activity was detected in ‘Wells’ cotyledons from seeds germinated at 35°C.  相似文献   

19.
Abstract— Homogenates of bovine neural lobe tissue were fractionated by differential centrifugation at 20°C or at 4°C and the distribution of activities of vasopressin and oxytocin among the fractions was compared. The ratio of total hormone to protein (mg) in the homogenate was similar at the two temperatures. At 20°C a much smaller proportion of the total hormone was recovered in the soluble fraction (100,000 gav supernatant), than at 4°C with a corresponding increase in recovery in the nerve-ending fraction (800–3000 g sediment). Nerve endings isolated at 4°C did not, when incubated, release hormone in response to changes in temperature. Nerve endings isolated at 20°C released hormone when the temperature was reduced below 15°C. Gradual reduction in temperature led to hormone release unaccompanied by lactate dehydrogenase release. Incubation of nerve endings for 10 min at 10°C increased the release of vasopressin and of neurophysin without any increase in lactate dehydrogenase. These results demonstrate that release of vasopressin by cold stimulation occurs by way of exocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号