首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development.Key words: cell wall, O-glycoproteins, extensins, proline hydroxylation, polarized growth, root hairs, P4H  相似文献   

2.
Hydroxylation of proline residue occurs in specific peptides and proteins derived from plants and animals, but the functional role of this modification has been characterized primarily in collagen. Marine cone snails produce disulfide-rich peptides that have undergone a plethora of posttranslational modifications, including proline hydroxylation. Although Conus snails extensively utilize proline hydroxylation, the consequences of this modification remain largely unexplored. In this work, we investigated the function of 4-hydroxyproline (Hyp) in conotoxins from three distinct gene families: mu-, omega-, and alpha-conotoxins. Analogues of mu-GIIIA, omega-MVIIC, alpha-GI, and alpha-ImI were synthesized with either Pro or Hyp, and their in vitro oxidative folding and biological activity were characterized. For GIIIA, which naturally contains three Hyp residues, the modifications improved the ability to block NaV1.4 sodium channels but did not affect folding. In contrast, the presence of Hyp in MVIIC had a significant impact on the oxidative folding but not on the biological activity. The folding yields for the MVIIC[Pro7Hyp] analogue were approximately 2-fold higher than for MVIIC under a variety of optimized oxidation conditions. For alpha-conotoxins ImI and GI, the hydroxylation of the conserved Pro residue improved their folding but impaired their activities against target receptors. Since prolyl-4-hydroxylase and protein disulfide isomerase coexist as a heterotetramer in the ER, we discuss the effects of Hyp on the folding of conotoxins in the context of cis-trans isomerization of Pro and Hyp. Taken together, our data suggest that proline hydroxylation is important for both in vitro oxidative folding and the bioactivity of conotoxins.  相似文献   

3.
4.
5.
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins.  相似文献   

6.
7.
The single 3-hydroxyproline residue in the collagen I polypeptides is essential for proper fibril formation and bone development as its deficiency leads to recessive osteogenesis imperfecta. The vertebrate prolyl 3-hydroxylase (P3H) family consists of three members, P3H1 being responsible for the hydroxylation of collagen I. We expressed human P3H2 as an active recombinant protein in insect cells. Most of the recombinant polypeptide was insoluble, but small amounts were also present in the soluble fraction. P3H1 forms a complex with the cartilage-associated protein (CRTAP) that is required for prolyl 3-hydroxylation of fibrillar collagens. However, coexpression with CRTAP did not enhance the solubility or activity of the recombinant P3H2. A novel assay for P3H activity was developed based on that used for collagen prolyl 4-hydroxylases (C-P4H) and lysyl hydroxylases (LH). A large amount of P3H activity was found in the P3H2 samples with (Gly-Pro-4Hyp)5 as a substrate. The Km and Ki values of P3H2 for 2-oxoglutarate and its certain analogues resembled those of the LHs rather than the C-P4Hs. Unlike P3H1, P3H2 was strongly expressed in tissues rich in basement membranes, such as the kidney. P3H2 hydroxylated more effectively two synthetic peptides corresponding to sequences that are hydroxylated in collagen IV than a peptide corresponding to the 3-hydroxylation site in collagen I. These findings suggest that P3H2 is responsible for the hydroxylation of collagen IV, which has the highest 3-hydroxyproline content of all collagens. It is thus possible that P3H2 mutations may lead to a disease with changes in basement membranes.  相似文献   

8.
Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.  相似文献   

9.
Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.  相似文献   

10.
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.  相似文献   

11.
Two conomarphins were purified as the major component of the venom of Conus eburneus. Conomarphins Eb1 and Eb2 showed biological activity in the mollusk Pomacea padulosa, causing sluggishness and retraction of siphon, foot, and cephalic tentacles. To further probe the effects of conserved amino acids and posttranslational modifications in conomarphins, we prepared four synthetic analogues: conomarphin Eb1 Hyp10Pro, Hyp10Ala, d ‐Phe13Ala, and l ‐Phe13 variants. Structure‐activity relationship analysis indicated that d ‐Phe13 is critical to the biological activity of conomarphins. In contrast, amino acid changes at position 10 and removal of posttranslational modification in Hyp10Pro can be tolerated. The high expression level and observed mollusk activity of conomarphins may suggest their potential role as defensive arsenal of Conoidean snails against other predatory gastropods.  相似文献   

12.
13.
14.
Abstract

The occurrence of hydroxyproline (Hyp) in collagen, Clq and acetylcholinesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the β-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific β-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to Clq and acetylcholineesterase both of which share the general structural and functional properties of collagen in their “tail” regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of Clq and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

15.
16.
Cofactors in and as posttranslational protein modifications   总被引:1,自引:0,他引:1  
R B Rucker  F Wold 《FASEB journal》1988,2(7):2252-2261
A symposium at the FASEB meeting in Las Vegas in May 1988 will be devoted to the role of cofactors (vitamins, coenzymes, prosthetic groups) in and as posttranslational protein modifications; the symposium is part of a thematic focus on metabolic regulation. In planning the symposium, we decided to consider metabolic regulation in its broadest context, which should include both the short-term activity modulations in the life of contemporary organisms and the adaptations of special molecular strategies over evolutionary time. We further decided to focus the symposium context on the involvement of cofactors both as catalytic participants in and as substrates or end products of posttranslational modifications. As a preview of the actual symposium, the present discussion is an attempt to enumerate cases of cofactor involvement in these different categories: 1) essential nutrients as participants in posttranslational modifications; 2) cofactors as donor substrates in reversible, regulatory modifications; and 3) cofactor incorporation or generation as covalent constituents of proteins. The actual symposium topics are taken from category 1: vitamin C and protein hydroxylation (K. I. Karivikkio) and vitamin K and protein carboxylation (J. W. Suttie) and category 3: biotinylation (H. G. Wood), phycobiliproteins (A. Glazer), and pyruvoyl enzymes (W. Dowhan).  相似文献   

17.
The occurrence of hydroxyproline (Hyp) in collagen, C1q and acetylcholineesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the beta-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific beta-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to C1q and acetylcholineesterase both of which share the general structural and functional properties of collagen in their "tail" regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of C1q and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

18.
19.
20.
Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O-glycoproteins was obtained, but a high degree of proline hydroxylation and hydroxyproline-linked arabinosides, on a mucin (MUC1)-derived substrate, was also observed. Addition of the prolyl 4-hydroxylase inhibitor 2,2-dipyridyl, however, effectively suppressed proline hydroxylation and arabinosylation of MUC1 in Bright Yellow-2 cells. In summary, stably engineered mammalian type O-glycosylation was established in transgenic plants, demonstrating that plants may serve as host cells for the production of recombinant O-glycoproteins. However, the present stable implementation further strengthens the notion that elimination of endogenous posttranslational modifications may be needed for the production of protein therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号