首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The lipase from Candida cylindracea was immobilized by its adsorption on the internal surface of hydrophobic microporous poly(styrene-divinylbenzene) supports prepared by the concentrated emulsion polymerization method. The prepared supports have a surface area of the order of 200 m2/g. The immobilized enzyme catalyst is used for the hydrolysis of triacylglycerides. The effects of the amounts of surfactant and divinylbenzene used in the preparation of the hydrophobic support on the adsorption capacity for lipase and on the activity of the immobilized lipase have been investigated. The activity of the immobilized enzyme per enzyme molecule can be higher than that of the free lipase.  相似文献   

2.
Immobilization of lipase on hydrophobic nano-sized magnetite particles   总被引:2,自引:0,他引:2  
As a tool for the stable enzyme reuse, enzyme immobilization has been studied for several decades. Surface-modified nano-sized magnetite (S-NSM) particles have been suggested as a support for the immobilization of enzyme in this study. Based on the finding that a lipase is strongly adsorbed onto a hydrophobic surface, NSM particles (8–12 nm) were made hydrophobic by binding of sodium dodecyl sulfate via a sulfate ester bond. Various types of measurements, such as transmission electron microscopy, X-ray diffraction, infrared spectroscopy, vibration sample magnetometer, and thermo gravimetric analysis, were conducted in characterizing S-NSM nanoparticles. S-NSM particles were used for the adsorption of porcine pancreas lipase (PPL). A dodecyl carbon chain is expected to form a spacer between the surface of the NSM and the lipase adsorbed. The immobilized PPL showed the higher specific activity of oil hydrolysis than that of free one. Immobilized PPL could be recovered by magnetic separation, and showed the constant activity during the recycles.  相似文献   

3.
On the issue of interfacial activation of lipase in nonaqueous media   总被引:2,自引:0,他引:2  
The question of whether lipases can be activated by adsorption onto an interface in organic solvents was addressed using Rhizomucor miehei lipase as a model. In aqueous solution, this enzyme was shown to undergo a marked interfacial activation. However, lipase (either lyophilized or precipitated from water with acetone) suspended in ethanol or 2-(2-ethoxyethoxy)ethanol containing triolein exhibited no jump in catalytic activity when the concentration of triolein exceeded its solubility in these solvents, thereby resulting in formation of an interface. To test whether the lack of interfacial activation was due to the insolubility of the enzyme in organic media, lipase was covalently modified with poly(ethylene glycol). The modified lipase, although soluble in nonaqueous media, was still unable to undergo interfacial activation, regardless of the hydrophobicity of the interface. This inability was found to be caused by the absence of adsorption of lipase onto interfaces in organic solvents, presumably because of the absence of the hydrophobic effect (the driving force of lipase adsorption onto hydrophobic interfaces in water) in such media. The uncovered lack of interfacial adsorption and activation suggests that the short alpha-helical "lid" covering the active center of the lipase remains predominantly closed in nonaqueous media, thus contributing to diminished enzymatic activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
Sorption isotherms of pancreatic lipase on solid supports were studied. It was shown that the enzyme adsorption can be described by Langmuir equation for hydrophobic surface and by the equation which takes into account reversible dimerization of the protein in the absorption layer for hydrophilic surface. The catalytic properties of adsorbed lipase depend on the nature of solid support. The significant role of the structure of adsorption layer in heterogeneous activation of the enzyme on hydrophobic surface was suggested.  相似文献   

5.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

6.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

7.
Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.  相似文献   

8.
A novel procedure for attaching lipase to certain kinds of hydrophobic surfaces is described. The procedure involves covalent derivatization of the protein molecule by reaction in solution with a hydrophobic imidoester, aldehyde or activated polyethylene glycol. The resulting protein derivative is then allowed to adsorb onto an insoluble hydrophobic surface. Quantitative adsorption is observed and the enzyme is bound very strongly on the support The number and nature of the hydrophobic substituents introduced in the chemical derivatization step can be easily controlled. The adsorption step occurs spontaneously upon exposure of the modified protein to a variety of hydrophobic materials. The hydrophobic lipase derivative obtained by reaction with PEG activated with p-nirrophenyl chloroformate, for example, adsorbs readily onto polyacrylate and polystyrene beads, with most of its esterification activity in organic solvent intact. Its thermostability is also greatly enhanced. Derivatization of lipase with hydrophobic groups greatly enhances its esterification activity in organic solvent, and its immobilization in this manner enables the preparation of a highly reactive biocatalyst for biotechnological application.  相似文献   

9.
Summary Lipase from Rhizopus arrhizus was immobilized by physical adsorption on hydrophobic microporous polypropylene supports. The immobilized enzyme catalyst was employed for the hydrolysis of palm kernel olein in the presence of n-hexane. The initial rate of lipolysis for vacuum dried immobilized lipase is nearly double that of air dried. The initial rate of lipolysis declines with increase of drying time. Immobilized lipase clearly reveals a relatively high initial rate after 30 days of storage at 4 °C. Stability of the immobilized lipase in buffer could be enhanced up to three-fold that of the free lipase.  相似文献   

10.
Hydrophobic silica aerogels modified with methyl group were applied as support to immobilize Candida rugosa lipase (CRL). At the adsorption process, different alcohols were used to intensify the immobilization of CRL. The results showed that n-butanol wetting the hydrophobic support prior to contacting with enzyme solution could promote lipase activity, but the adsorption quantity onto the support decreased. Based on this, a novel immobilization method was proposed: the support contacted with enzyme solution without any alcohols, and then the immobilized enzymes were activated by 90% (V) n-butanol solution. The experimental results showed that this method could keep high adsorption quantity (413.0 mg protein/g support) and increase the lipase specific activity by more than 50%. To improve the stability of immobilized lipase, the support after adsorption was contacted with n-octane to form an oil layer covering the immobilized lipases, thus the leakage can be decreased from over 30–4% within 24 h. By utilizing proper cosolvents, a high enzyme activity and loading capacity as well as little loss of lipase was achieved without covalent linkage between the lipase and the support. This is known to be an excellent result for immobilization achieved by physical adsorption only.  相似文献   

11.
The aptitude of a hollow-fiber membrane reactor to determine lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from Canadida cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its conformation is hardly altered by immobilization, resulting in an activity comparable to that of the enzyme in its native form. The reaction kinetics defined on the membrane surface area were found to obey Michaelis-Menten kinetics. The specific activity of the lipase in the membrane reactor was found to be significantly higher than in an emulsion reactor. The activity and stability of the enzyme immobilized on a hydrophilic membrane surface seem not to be influenced significantly by the choice of the membrane material. The hollow-fiber membrane reactor is a suitable tool to assess lipase kinetics in a fast and convenient way.  相似文献   

12.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

13.
The effect of various covalent chemical modifications on the transesterification activity and stability of adsorbed lipase B from Candida antarctica (CALB) was studied in 2-butanone and o-xylene. CALB species modified with either polyethylene glycol 2000 monomethyl ether (MPEG), polyethylene glycol 300 mono-octyl ether (OPEG) or n-octanol (OCT) were used in combination with a hydrophobic (Accurel) and a hydrophilic (Duolite) support. The thermostabilities of adsorbed CALB in both solvents, and that of free CALB in o-xylene were not influenced by the modifications. In contrast, the thermostability of free CALB in 2-butanone decreased 2.5-fold after MPEG modification and increased 1.5-fold after modification with OPEG and n-octanol, compared to that of native CALB. The activities of the native and modified CALB species were up to 9-fold higher after adsorption onto Accurel than those of the corresponding free enzymes. Adsorption of these enzyme species onto Duolite only resulted in a 2- to 3-fold increase in the activity of OPEG- and OCT-modified CALB. The modified CALB species adsorbed onto Accurel show similar or up to 2-fold lower activities than do native adsorbed CALB species, while 1.5- to 6-fold higher activities were found for modified CALB species adsorbed onto Duolite. We propose that hydrophobic modifiers induce conformational changes of CALB during adsorption on a hydrophobic support whereas all three modifiers protect CALB from structural alterations during adsorption onto a hydrophilic support. Received: 18 March 1999 / Received revision: 21 June 1999 / Accepted: 27 June 1999  相似文献   

14.
Mesoporous silica particles for immobilization of lipase from Candida rugosa were prepared by precipitation and aggregation of primary particles from highly basic sodium silicate solution but without addition of templates. The average pore size of the material was 15.8 nm, which allowed enzyme adsorption inside the pores and high enzyme loading. Specific surface area of the material was found to be 359 m2g?1. A loading of 100 mglipasegdrysilica?1 was obtained at initial enzyme concentration of 1.8 mgmL?1 by physical adsorption. The FTIR spectrum showed the structural conformation of lipase to be retained after adsorption into the mesoporous silica support. Although the efficiency of the mesoporous biocatalyst was shown to be lower than that of the free enzyme, the immobilized enzyme showed enhanced thermal stability and could be desorbed with Triton X-100, indicating the hydrophobic nature of the adsorption.  相似文献   

15.
Candida rugosa lipase immobilized by adsorption on swollen Sephadex LH-20 could almost completely hydrolyze 60% (v/v) olive oil in isooctane. Kinetic analysis of the lipase-catalyzed hydrolysis reaction was found to be possible in this system. Amount of fatty acids produced was linearly proportional to the enzyme concentration of 720 mug/g wet gel. The specific enzyme activity was 217 units/mg protein at 60% (v/v) olive oil concentration. When the initial rate is plotted versus concentration of olive oil, this system did not follow Michaelis-Menten kinetics. Maximum activity was obtained at pH 7, but optimum temperature shifted towards higher one with the increase of olive oil concentration. Among the various chemical compounds tested, Hg(2+) and Fe(2+) inhibited the lipase seriously. As the concentration of olive oil increased, the rate of the hydrolysis also increased, but degree of the hydrolysis was observed to decrease. The supply of water from the inside of the gel to the surface of the gel was the main factor for the control of the rate of hydrolysis in batch hydrolysis. The immobilized lipase was used to hydrolyze olive oil two times. Achievement of chemical equilibrium took a longer time with the addition of water and the degree of hydrolysis decreased in the second consecutive trial. After the second hydrolysis trial, the gels were regenerated in a packed column first by eluting out both residual fatty acids around the gel particles and the accumulated glycerol with ethanol and then with 0.05M phosphate buffer, pH 7. The immobilized lipase on the regenerated gel showed the same hydrolysis activity as the original one.  相似文献   

16.
Immobilization of Candida antarctica B lipase was examined on gold surfaces modified with either methyl- or hydroxyl-terminated self-assembled alkylthiol monolayers (SAMs), representing hydrophobic and hydrophilic surfaces, respectively. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance. Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy. The extent of lipase adsorption was nearly identical on either surface (approximately 240 ng cm−2), but its specific activity was sixfold higher on the methyl-terminated SAM, showing no activity loss upon immobilization. A uniform, 5.5 nm high, highly packed monolayer of CALB formed on the methyl-terminated SAM, while the adsorbed protein was disordered on the hydroxyl-terminated SAM. Hydrophobic surfaces thus may specifically orient the lipase in a highly active state.  相似文献   

17.
The two processes for the partial purification and for the immobilization of a crude lipase preparation (Candida rugosa Lipase OF) have been successfully integrated into one by simple adsorption of the enzyme onto a cation ion exchanger resin (SP-Sephadex C-50) at pH 3.5. Due to selective removal of the unfavorable lipase isoenzyme (L1), the enzyme components (mainly L2 and L3) that are tightly fixed on the resin displayed a significantly improved enantioselectivity (E value: 50 versus 13 with addition of Tween-80) in the biocatalytic hydrolysis of 2-chloroethyl ester of rac-ketoprofen. The activity yields of the immobilized lipase were 48 and 70%, respectively when emulsified and non-emulsified substrates were employed for enzyme assay. Moreover, the concentration of Tween-80 was found to be a factor affecting the lipase enantioselectivity. By using such an immobilized enzyme as biocatalyst, the process for preparing enantiopure (S)-ketoprofen becomes simpler and more practical as compared with the previously reported procedures and the product was obtained with >94% ee at 22.3% conversion in the presence of an optimal concentration (0.5 mg/ml) of Tween-80 at pH 3.5. Furthermore, the operational stability of the immobilized biocatalyst was examined in different types of reactors. In an air-bubbled column reactor, the productivity was much higher than that in a packed-bed column reactor, in spite of a slightly lower stability. Under optimal conditions, the air-bubbled column reactor could be operated smoothly for at least 350 h, remaining nearly 50% activity.  相似文献   

18.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

19.
The combination of magnetic nanoparticles and mesoporous silica can present a strategy for enzyme immobilization. In this work, magnetic siliceous mesocellular foam functionalized with octyl groups was prepared and used as support for lipase adsorption. Almost all the active lipases in crude enzyme solution were adsorbed by this magnetically separable, hydrophobic siliceous mesocellular foam. The resolution of 1-phenylethanol acylated with vinyl acetate can be achieved in 1.5 h using the resultant magnetic biocatalyst, whereas only 30% conversion was obtained by using the free lipase under the identical reaction conditions. These results are probably due to the “interfacial adsorption” and “hyper-activation” of lipase on the hydrophobic surface of the magnetic siliceous mesocellular foam. Moreover, the biocatalyst entrapped in the nanopores of this foam can be recycled magnetically for at least seven times without significant loss of its activity and enantioselectivity.  相似文献   

20.
Lipase activator activated the reaction by Saccharomycopsis lipolytica lipase at neutral pH in the presence of calcium ions, and 5 μg of the activators were sufficient to cause the reaction to proceed at maximum activity in the presence of 2 μl of tributyrin and 0.4 units of the lipase in a total volume of 360 μl.

To define the roles of the activator and calcium ion, we studied interactions between the activator and the lipase, between the activator and a hydrophobic interface, and between the lipase and the interface. Results suggest that the interfacial adsorption of the lipase is the limiting process of lipolysis and that it is controlled by the activator and by the concentration of calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号