首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaesthetic drugs can induce reversible as well as irreversible changes in cell membranes and intracellular proteins as well as lipid peroxidation in the liver. Low molecular weight iron species (LMWI) can by their catalytic activity contribute to the generation of free radicals (hydroxyl radicals). Free radicals are a recognisable cause of intracellular damage. Impaired mitochondrial function is also a sign of intracellular damage, which is usually irreversible. Thus, an agent may be cytotoxic when it causes a significant increase in intracellular LMWI. Whether the LMWI arise from ferritin or is released from iron containing proteins, the same reaction occurs. As long as LMWI can undergo redox cycling, hydroxyl radicals can be formed. We investigated the effect of various mixtures of diethylether, halothane, nitrous oxide and oxygen on the intracellular LMWI content and mitochondrial function of the rat myocardium.

Hearts isolated from rats anaesthetised with diethylether showed an increase in the cytosolic LMWI compared to the control group. No increase in mitochondrial LMWI was demonstrated. Subsequent perfusion of the isolated hearts showed a further increase in the LMWI. On perfusion the mitochondrial LMWI increased in comparison with controls. Mitochondrial function was significantly impaired as measured by the QO2 (state 3), ADP/O ratio and oxidative phosphorylation rate (OPR).

Exposure of rats to 50% nitrous oxide for 15 minutes increased the myocardial LMWI, but had no effect on mitochondrial function. Exposure to room air for 30 minutes before isolating the hearts, still showed a significant increase in LMWI with no detectable change in mitochondrial function.

Halothane, on the other hand, did not have an effect on the myocardial LMWI and mitochondrial function in the experiment setup used. We therefore concluded that diethylether and nitrous oxide are potentially toxic to the myocardium and may potentiate the action of free radicals.  相似文献   

2.
Acetaminophen is a phenol with antioxidant properties, but little is known about its actions on the mammalian myocardium and coronary circulation. We studied isolated, perfused guinea pig hearts, and tested the hypothesis that acetaminophen-treated hearts would be protected during ischemia-reperfusion. Acetaminophen concentrations in the range of 0.3-0.6 mmol/l caused modest but significant (P < 0.05) coronary vasoconstriction and positive inotropy. The effects were more brisk during constant pressure perfusion than during constant flow. During 20 min of low-flow, global myocardial ischemia and 40 min of reperfusion, hearts treated with acetaminophen retained or recovered a greater percentage of left ventricular function than hearts treated with vehicle. Myofibrillar ultrastructure appeared to be preserved in the reperfused myocardium with acetaminophen. By using chemiluminescence and spin-trap methodologies, we investigated acetaminophen-mediated antioxidant mechanisms to help explain the cardioprotection. The burst of hydroxyl radicals seen between 0 and 10 min of reperfusion was significantly attenuated (P < 0.05) by acetaminophen but not by vehicle. The 3-morpholinosydnominine (SIN-1) generation of peroxynitrite and its oxidative interaction with luminol to produce blue light during ischemia-reperfusion was also blocked by acetaminophen. Our results show that acetaminophen provides significant functional and structural protection to the ischemic-reperfused myocardium, and the mechanism of cardioprotection seems to involve attenuation of the production of both hydroxyl radicals and peroxynitrite.  相似文献   

3.
We have shown that cold perfusion of hearts generates reactive oxygen and nitrogen species (ROS/RNS). In this study, we determined 1) whether ROS scavenging only during cold perfusion before global ischemia improves mitochondrial and myocardial function, and 2) which ROS leads to compromised cardiac function during ischemia and reperfusion (I/R) injury. Using fluorescence spectrophotometry, we monitored redox balance (NADH and FAD), O2 levels and mitochondrial Ca2+ (m[Ca2+]) at the left ventricular wall in 120 guinea pig isolated hearts divided into control (Con), MnTBAP (a superoxide dismutase 2 mimetic), MnTBAP (M) + catalase (C) + glutathione (G) (MCG), C+G (CG), and NG-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) groups. After an initial period of warm perfusion, hearts were treated with drugs before and after at 27°C. Drugs were washed out before 2 h at 27°C ischemia and 2 h at 37°C reperfusion. We found that on reperfusion the MnTBAP group had the worst functional recovery and largest infarction with the highest m[Ca2+], most oxidized redox state and increased ROS levels. The MCG group had the best recovery, the smallest infarction, the lowest ROS level, the lowest m[Ca2+], and the most reduced redox state. CG and L-NAME groups gave results intermediate to those of the MnTBAP and MCG groups. Our results indicate that the scavenging of cold-induced O2 species to less toxic downstream products additionally protects during and after cold I/R by preserving mitochondrial function. Because MnTBAP treatment showed the worst functional return along with poor preservation of mitochondrial bioenergetics, accumulation of H2O2 and/or hydroxyl radicals during cold perfusion may be involved in compromised function during subsequent cold I/R injury. hypothermic ischemia; mitochondrial Ca2+; reactive oxygen species  相似文献   

4.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

5.
The reversible inhibition of respiratory activity could provide a novel approach to the preservation of traditionally hard to store plant germplasm such as clonal materials and recalcitrant seed. The gaseous anesthetic nitrous oxide caused a reversible, dose-dependent, partial inhibition of dioxygen utilization in mitochondrial particles isolated from cell suspension cultures of the salt-tolerant marsh grass Distichlis spicata, with maximal inhibition of 33% after 30 minutes exposure to an atmosphere of 80% nitrous oxide plus 20% oxygen. Respiration of whole cells required longer time to be affected by the anesthetic, and was reversibly inhibited an average of 19% when measured using a differential respirometer. Exposure to 80% nitrous oxide plus 20% oxygen for up to 10 days caused no measurable effect on cell growth.Abbreviations PCV packed cell volume - EDTA sodium ethylenediaminetetraacetic acid - BSA bovine serum albumin - MOPS 3(N-morpholino) propanesulfonic acid - TMPD N,N,N',N'-tetramethyl-p-phenylene diamine - STP standard temperature and pressure  相似文献   

6.
Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson’s disease.  相似文献   

7.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

8.
The production of hydroxyl radicals during calcium paradox injury was investigated by measuring the production of 2,5-dihydroxybenzoic acid (2,5-DHBA) from salicylate. Four groups of rats were analyzed. In the first group, isolated hearts were perfused with calcium-free medium for 10 minutes followed by perfusion with medium containing Ca++ for 10 minutes. In the other groups, 0.25 microM N,N'-diphenyl-1,3-phenylenediamine (DPPD), 80 microM cytochrome c, or 450 U/ml catalase was added. Coronary effluent was analyzed for the presence of 2,5-DHBA, and tissue sections were examined using light microscopy. In the first group, 2,5-DHBA production began during the calcium-free period, peaked tenfold 60-90 sec. into the Ca repletion period, and declined thereafter. The increase in 2,5-DHBA was accompanied by severe cell damage. Cytochrome c reduced 2,5-DHBA production, and catalase almost completely inhibited 2,5-DHBA production, while DPPD had no effect on 2,5-DHBA production. None of the three additives provided any complete morphological protection. The data provide evidence for the production of hydroxyl radicals during calcium-paradox injury, that their production is dependent upon the presence of hydrogen peroxide, and that cell damage in the calcium paradox is not primarily mediated by the extracellular hydroxyl radicals.  相似文献   

9.
The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.  相似文献   

10.
Mitochondrial contact sites (MiCS) are dynamic structures involved in high capacity transport of energy from mitochondria into the cytosole. Previous studies revealed that in normal conditions the actual number of MiCS is in correlation with the energy requirements of the heart, particularly with those for its contractile work. Although the detailed mechanisms of signalling between the processes of energy utilisation and MiCS formation in the heart are not yet elucidated, it is known that intracellular Ca2+ transients are intimately involved in this crosstalk. The present study is devoted to investigation of Ca2+-linked MiCS formation in healthy adult hearts and in hearts with modified Ca2+-handling such as in developing, in juvenile and diabetic myocardium. Experiments were performed on hearts of healthy rats on the 22nd embryonal day, 1st, 4th, 7th and 14th postnatal days as well as on adult hearts. Diabetic hearts were investigated on the 8th day after streptozotocin injection (45 mg.kg–1 i.v.) to adult rats. Intracellular Ca2+ movements were affected by modulation of Ca2+ concentration in perfusion solution (1.6 or 2.2 mmol.l–1) in isolated, Langendorff-perfused hearts, by calcium paradox (CaP) or by replacing of Ca2+ by Cd2+ ions. Elevation of extracellular Ca2+ was reflected by 30.1, 10.4 and 24.1% increase in intracellular free Ca2+ concentration in healthy adult, diabetic and 14-day old hearts respectively. In developing hearts the amount of MiCS was culminating on the 4th postnatal day. In adult hearts, elevated calcium in the perfusion solution, CaP as well as diabetes led to a significant increase in the amounts of MiCS formed (58.1, 77.2 and 86.5% respectively; p < 0.05). Diabetic and 14-day old hearts naturally exhibited amounts of MiCS comparable to those obtained by Ca2+-stimulation of MiCS formation in adult healthy hearts. In contrast to healthy controls, perfusion of diabetic and 14-day old hearts with elevated Ca2+ as well as induction of CaP exerted little influence on MiCS formation (4.4 and 8.2% for elevated Ca2+; 2.9 and 10.7% for CaP; p > 0.05). A replacement of Ca2+ by Cd2+ ions lowered the amount of MiCS in healthy adult and diabetic hearts (61 and 52.2%; p < 0.05). In conclusion, during development, the formation of MiCS may be influenced by both, permanent stimulation by Ca2+-signalling and the availability of mCPK. In healthy adult hearts the amount of MiCS is modulated by intracellular Ca2+ transients in response to changes in extracellular Ca2+ concentration. In diabetic hearts the modulation of MiCS formation is naturally attenuated, apparently as a consequence of persisting alterations in Ca2+-handling.  相似文献   

11.
Matti Nuutinen  Ilmo Hassinen 《BBA》1981,637(3):481-489
The role of extracellular Pi and transmembrane fluxes across the sarcolemma in the regulation of cellular respiration was studied in isolated Langendorff-perfused rat hearts. Extracellular phosphate did not significantly affect the oxygen consumption or cellular phosphorylation potential of the myocardium. K+-induced arrest was used to change the mechanical work load of the heart. Arresting the heart caused a rapid decrease in the unidirectional efflux of phosphate determined by in vitro prelabelling of the intracellular phosphate compounds with 32P and determining the specific radioactivity of the γ-P of ATP, and the label appearance into the perfusion medium. At normal or elevated perfusate phosphate concentration there was a fairly slow net uptake of phosphate. The decrease in phosphate fluxes upon the K+-induced arrest was probably not due to a decrease in the transmembrane Na+ or K+ gradients because a further increase in the perfusate K+ concentration caused an increase in the K+ efflux to the levels observed in contracting hearts. The use of higher than normal concentrations of phosphate necessitated a lowering of the extracellular Ca2+ concentration, which caused a diminution of the oxygen consumption, accompanied by mitochondrial flavoprotein oxidation in the heart. This finding suggested that the extracellular Ca2+ concentration may be involved in the substrate level regulation of mitochondrial metabolism.  相似文献   

12.
Hwang IS  Lee J  Jin HG  Woo ER  Lee DG 《Mycopathologia》2012,173(4):207-218
Amentoflavone was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina. It is a traditional herb for the therapy of chronic trachitis and exhibits some anti-tumor activity. Previously, we confirmed the antifungal effects of amentoflavone. The objective of this study was to investigate the antifungal mechanism(s) of amentoflavone, such as mitochondria-mediated apoptotic cell death. The cells that were treated with amentoflavone exhibited a series of cellular changes that were consistent with apoptosis: externalization of phosphatidylserine, DNA and nuclear fragmentation, accumulation of intracellular reactive oxygen species (ROS) and hydroxyl radicals, and activation of metacaspase. In addition, diagnostic markers of apoptosis, including the reduction of mitochondrial inner-membrane potential and the release of cytochrome c from mitochondria, were observed. These phenomena are important changes in mitochondria-mediated apoptosis. Furthermore, the effect of thiourea as hydroxyl radical scavenger on amentoflavone-induced apoptosis was evaluated. A hydroxyl radical is a more active ROS species. Mitochondrial dysfunction was inhibited, which was indicated by decreased levels of intracellular hydroxyl radicals. Taken together, our results present the first evidence that amentoflavone induces apoptosis in C. albicans cells and is associated with the mitochondrial dysfunction. Besides, amentoflavone-induced hydroxyl radicals may play a significant role in mitochondria-mediated apoptosis.  相似文献   

13.
Energy deprivation in the myocardium is associated with impaired heart function and increased morbidity. LKB1 is a kinase that is required for activation of AMP-activated protein kinase (AMPK) as well as 13 AMPK-related protein kinases. AMPK stimulates ATP production during ischemia and prevents post-ischemic dysfunction. We used the Cre–Lox system to generate mice where LKB1 was selectively knocked out in cardiomyocytes and muscle cells (LKB1-KO) to assess the role of LKB1 on cardiac function in these mice.Heart rates of LKB1-KO mice were reduced and ventricle diameter was increased. Ex vivo, cardiac function was impaired during aerobic perfusion of isolated working hearts, and recovery of function after ischemia was reduced. Although oxidative metabolism and mitochondrial function were normal, the AMP/ATP ratio was increased in LKB1-KO hearts. This was associated with a complete ablation of AMPKα2 activity, and a stimulation of signaling through the mammalian target of rapamycin. Our results establish a critical role for LKB1 for normal cardiac function under both aerobic conditions and during recovery after ischemia. Ablation of LKB1 leads to a decreased cardiac efficiency despite normal mitochondrial oxidative metabolism.  相似文献   

14.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

15.
The one-electron reduction of nitrous oxide is a possible pathway to the hydroxyl radical. The one- and two-electron reduction potentials EO' (N2O/OH,N2) and EO' (N2O/H2O, N2) are calculated to be 0.32 V and 1.32 V at pH 7, respectively, for all species dissolved in water. Although nitrous oxide is thermodynamically capable of oxidising a variety of biomolecules, it is kinetically rather inert. The reason that nitrous oxide does not produce hydroxyl radicals readily might be that the one-electron reduction proceeds through an N2O- intermediate which is energetically very unfavourable: EO (N2O/N2O-) = -1.1 V.  相似文献   

16.
Voltage-sensitive dyes (VSDs) are used to record transient potential changes in various cardiac preparations. In our laboratory, action potentials have been recorded by optical probe using di-4-ANEPPS. In this study, the effects of two different ways of staining were compared in guinea pig and rabbit isolated hearts perfused according to Langendorff: staining either by coronary perfusion with low dye concentration or with concentrated dye as a bolus into the aorta. Staining with low dye concentration lead to its better persistence in the tissue. Electrogram and coronary flow were monitored continuously. During the staining and washout of the dye, prominent electrophysiological changes occurred such as a decrease in spontaneous heart rate, partial atrioventricular block and changes of ST-T segment, accompanied by a decrease in mean coronary flow. No production of hydroxyl radicals was found by HPLC which excluded significant ischemic damage of the myocardium. Good viability of the stained preparation was supported by unchanged electron microscopy. Since in rabbit hearts the VSD-induced arrhythmogenesis was less pronounced, we conclude that the rabbit myocardium is more resistant to the changes triggered by VSD application. It may be due to different properties of the membrane potassium channels in the cardiomyocytes of these two species.  相似文献   

17.
Several studies indicate the presence of hydroxyl radical (OH·) as well as its involvement in the myocardial reperfusion injury. A transition metal-like iron is necessary for the conversion of superoxide anion (O2 ) to a highly reactive and cytotoxic hydroxyl radical (OH·). In the present study, we have examined the generation of OH· and free iron in reperfused hearts following either normothermic (37°C) or hypothermic ischemia (5°C). Employing the Langendorff technique, isolated rat hearts were subjected to global ischemia for 30 min at 37°C or 5°C and were then reperfused for 15 min at 37°C. The results of the study suggest that both the OH· generation in myocardium and free iron release into perfusate were significantly lower in hearts made ischemic at 5°C as compared to 37°C. Release of myoglobin and lactic acid dehydrogenase into perfusate also followed a similar pattern. Furthermore, in in vitro studies, chemically generated O2 at 5°C caused a significantly lower rate of oxidation of oxymyoglobin as well as generation of OH° and free iron as compared to 37°C. These results suggest that (1) reperfusion of hypothermic ischemic heart is associated with a reduction in the generation of OH· and cellular damage compared to that of normothermic ischemic heart, and (2) myoglobin, an intracellular protein, is a source of free iron and plays a role in the reperfusion injury mediated by free radicals.Abbreviations OH· hydroxyl radical - O2 superoxide anion - ODFR oxygen-derived free radicals - KHB Krebs-Henseleit buffer - LDH lactate hydrogenase - SOD superoxide dismutase  相似文献   

18.
Excessive formation of free radicals possibly plays an important role in the origin of irreversible damage of the heart after hypoxic, ischemic or Ca2+-free treatment. The effect of these treatments on the activity of superoxide dismutase and the glutathione system was studied on isolated rat heart. These activities reflect the protective capacity of the heart against reactive substances. In addition the peroxidation of lipids is determined in the treated hearts using malondialdehyde formation as an indicator. All experiments were performed using a Langendorff-apparatus with recirculating perfusion. The observed changes in the components of the glutathione system and superoxide dismutase activity both after hypoxic, ischemic and Ca2+-free perfusion, as measured upon reperfusion, indicate a decrease in cellular defense mechanisms in the heart against free radicals. The effect was most pronounced upon Ca2+-repletion after a period of Ca2+-free perfusion. No malondialdehyde could however be detected either in the tissue of the treated hearts or in the perfusate. Our data give reason to expect beneficial effects of an adequate pharmacological treatment, which replenishes the cellular defence systems.  相似文献   

19.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

20.
Tokuno S  Thorèn P  Löwbeer C  Valen G 《Life sciences》2001,69(17):2067-2080
Nitric oxide (NO) may play an essential role for maintenance of cardiac function and perfusion, while endothelial dysfunction of atherosclerotic vessels may aggravate ischaemia/reperfusion injury. This paper investigates the role of nitric oxide in ischaemia/reperfusion injury in hearts with coronary atherosclerosis. Hearts of apolipoprotein E/LDL receptor double knockout (ApoE/LDLr KO) mice fed an atherogenic diet for 7-9 months were isolated and Langendorff-perfused with 40 minutes of global ischaemia and 60 minutes reperfusion, and funtion and infarction compared with hearts of C57BL/6 controls in the prescence or abscence of the NO-donor SNAP or the NOS inhibitor L-NAME. Hearts of animals with atherosclerosis were more susceptible to ischaemia/reperfusion injury than hearts of animals with healthy vessels, evident as more impaired left ventricular performance. SNAP protected function and reduced infarct size in atherosclerotic hearts, but the same concentration of SNAP was detrimental in normal hearts, perhaps due to NO-overproduction and peroxynitrite formation demonstrated immunohistochemically as increased formation of nitrosylated tyrosine. A low concentration of SNAP protected against ischaemia/reperfusion dysfunction in normal hearts. L-NAME decreased left ventricular performance in atherosclerotic hearts. These findings suggest that impaired endothelium dependent function contributes to reperfusion injury in coronary atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号