首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2(+/-) mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2(+/+)Con, n = 7), a trained wild type (SOD2(+/+)Run, n = 6), a non-active SOD2(+/-) (SOD2(+/-)Con, n = 9) and a trained SOD2(+/-) (SOD2(+/-)Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2(+/-) mice elevated levels of 15-F(2t)-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.  相似文献   

2.
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm?/? mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/? mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression.  相似文献   

3.
The adolescent skeleton undergoes accelerated growth determining overall bone density, length, and quality. Diseases such as type 1 diabetes (T1D), most often diagnosed in adolescents, can alter bone processes and promote bone loss. Studies examining type 1 diabetic (T1D) bone pathologies typically utilize adult mice and rely on pharmacologic models such as streptozotocin (STZ)‐induced diabetic rodents. To test the effect of T1D on adolescent bone growth/density we used a novel juvenile genetic model (Ins2+/? mice) that spontaneously develop T1D at approximately 5 weeks of age and compared our findings with STZ‐induced T1D mice. Compared to controls, both Ins2+/? and STZ‐induced T1D mice displayed blood glucose levels greater than 300 mg/dl and reduced body, fat and muscle mass as well as femur trabecular bone density. STZ mice exhibited greater bone loss compared to Ins2+/? mice despite having lower blood glucose levels. Cortical bone was affected in STZ but not Ins2+/? mice. Osteocalcin serum protein and bone RNA levels decreased in both models. Consistent with studies in adult mice, STZ adolescent mice displayed increased marrow adiposity, however this was not observed in the Ins2+/? mice. Reduced femur length, decreased growth plate thickness and decreased collagen II expression in both model simplies impaired cartilage formation. In summary, both pharmacologic and spontaneous adolescent T1D mice demonstrated a bone synthesis and growth defect. STZ appears to cause a more severe phenotype. Thus, the Ins2+/? mouse could serve as a useful model to study adolescent T1D bone loss with fewer complications. J. Cell. Physiol. 228: 689–695, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Acute kidney injury (AKI) has become a common disorder with a high risk of morbidity and mortality, which remains major medical problem without reliable and effective therapeutic intervention. Apoptosis‐stimulating protein two of p53 (ASPP2) is a proapoptotic member that belongs to p53 binding protein family, which plays a key role in regulating apoptosis and cell growth. However, the role of ASPP2 in AKI has not been reported. To explore the role of ASPP2 in the progression of AKI, we prepared an AKI mouse model induced by ischaemia reperfusion (I/R) in wild‐type (ASPP2+/+) mice and ASPP2 haploinsufficient (ASPP2+/?) mice. The expression profile of ASPP2 were examined in wild‐type mice. The renal injury, inflammation response, cellular apoptosis and autophagic pathway was assessed in ASPP2+/+ and ASPP2+/? mice. The renal injury, inflammation response and cellular apoptosis was analysed in ASPP2+/+ and ASPP2+/? mice treated with 3‐methyladenine or vehicle. The expression profile of ASPP2 showed an increase at the early stage while a decrease at the late stage during renal injury. Compared with ASPP2+/+ mice, ASPP2 deficiency protected mice against renal injury induced by I/R, which mainly exhibited in slighter histologic changes, lower levels of blood urea nitrogen and serum creatinine, and less apoptosis as well as inflammatory response. Furthermore, ASPP2 deficiency enhanced autophagic activity reflecting in the light chain 3‐II conversion and p62 degradation, while the inhibition of autophagy reversed the protective effect of ASPP2 deficiency on AKI. These data suggest that downregulation of ASPP2 can ameliorate AKI induced by I/R through activating autophagy, which may provide a novel therapeutic strage for AKI.  相似文献   

5.
Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2−/−) and wild-type (Tfr2+/+) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2−/− mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.  相似文献   

6.
Monoamine uptake inhibitors are common treatments for depression; however, the therapeutic efficacy of these drugs varies widely. Two factors that are commonly linked to clinical outcome are age and serotonin transporter (SERT) genotype. Mouse models provide powerful tools to study consequences of age and genotype on antidepressant‐like efficacy; however, to date, systematic studies of this nature are lacking. Here, we used the tail suspension test (TST), a preclinical assay for antidepressant efficacy, to gain insight into age and SERT genotype dependency of immobility time in the TST under control conditions (saline injection) and in response to the tricyclic antidepressant, desipramine (DMI). Immobility after saline injection in juvenile, adolescent, adult, mature adult and middle‐aged mice (postnatal days 21, 28, 90, 210 and 300, respectively) significantly increased with age; however, the rate of increase was slower for SERT null (?/?) mice than for wild‐type (+/+) or heterozygote (+/?) mice. Desipramine reduced immobility across ages and SERT genotypes. Middle‐aged, but not adult, SERT?/? mice were significantly more sensitive to DMI than age‐matched SERT+/+ or SERT+/? mice. Desipramine was less potent in middle‐aged SERT+/+ and SERT+/? mice than in adult SERT+/+ or SERT+/? mice. Regardless of age, DMI's maximal effects were greater in SERT?/? mice than in SERT+/+ or SERT+/? mice. These results show that immobility time in the TST varies as a function of age and SERT genotype, underscoring the utility of the TST as a potential model to examine age‐ and SERT genotype‐dependent influences on antidepressant response.  相似文献   

7.
Atp1a3 is the Na‐pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3‐deficient heterozygous mice (Atp1a3+/?) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3+/? and compared the rank and hierarchy structure between Atp1a3+/? and wild‐type mice within a housing cage using the round‐robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3+/? than wild‐type mice, and Atp1a3+/? approached Atp1a3+/? mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3+/? group than in the wild‐type group, while no difference was observed in the mixed‐genotype housing condition. (3) Hierarchy formation was not different between Atp1a3+/? and wild type. (4) Atp1a3+/? showed a lower rank in the mixed‐genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3+/? showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy.  相似文献   

8.
9.
In retinitis pigmentosa (RP), various mutations cause rod photoreceptor cell death leading to increased oxygen levels in the outer retina, progressive oxidative damage to cones, and gradual loss of cone cell function. We have been exploring the potential of overexpressing components of the endogenous antioxidant defense system to preserve cone cell function in rd10+/+ mice, a model of RP. rd10+/+ mice deficient in superoxide dismutase 1 (SOD1) showed increased levels of superoxide radicals and carbonyl adducts (a marker of oxidative damage) in the retina and more rapid loss of cone function than rd10+/+ mice with normal levels of SOD1. This suggests that SOD1 is an important component of the antioxidant defense system of cones, but increased expression of SOD1 in rd10+/+ mice increased oxidative damage and accelerated the loss of cone function. Coexpression of SOD1 with glutathione peroxidase 4 (Gpx4), which like SOD1 is localized in the cytoplasm, but not with catalase targeted to the mitochondria, reduced oxidative damage in the retina and significantly slowed the loss of cone cell function in rd10+/+ mice. Gene transfer resulting in increased expression of SOD2, but not coexpression of SOD2 and mitochondrial Gpx4, resulted in high levels of H2O2 in the retina. These data suggest that to provide benefit in RP, overexpression of an SOD must be combined with expression of a peroxide-detoxifying enzyme in the same cellular compartment.  相似文献   

10.
Objective: To compare the effect of voluntary exercise on body weight, food consumption, and levels of serum proteins between wild‐type and carboxypeptidase E‐deficient (Cpefat/fat) mice. Research Methods and Procedures: Study 1 consisted of three groups of female mice: Cpefat/fat mice with continuous access to exercise wheels for 3 weeks (n = 4); wild‐type C57BKS mice with access to exercise wheels for 3 weeks (n = 4); and sedentary Cpefat/fat mice (n = 3). Activity, body weight, and food consumption were monitored for this period and a subsequent 9‐week period without exercise wheels. Study 2 consisted of four groups of male mice (n = 6 to 7 each): Cpefat/fat mice with exercise wheels, wild‐type mice with exercise wheels, and Cpefat/fat and wild‐type mice without exercise wheels. Body weight and food consumption were measured over 4 weeks. Sera were collected, and the protein profile was determined by 2‐dimensional gel electrophoresis and mass spectrometry. Results: Cpefat/fat mice were moderately hyperphagic but lost weight during the initial exercise period because of greater energy expenditure. The effect of exercise was temporary, and the mice gained weight after the second week. Several serum proteins were found to be altered by exercise: haptoglobin was decreased by exercise in Cpefat/fat mice, and several kallikreins were increased by exercise in wild‐type mice. Discussion: The access to exercise wheels provided an initial weight loss in Cpefat/fat mice, but this effect was offset by elevated food consumption. The serum proteomics results indicated that Cpefat/fat and wild‐type mice differed in their response to exercise.  相似文献   

11.
A recent genome‐wide association study has determined that the Niemann‐Pick C1 (NPC1) gene is associated with early‐onset and morbid adult obesity. However, what effects of the nonsynonymous variation in NPC1 on protein function result in weight gain remains unknown. The NPC1 heterozygous mouse model (Npc1+/?), which expresses one‐half the normal amounts of functional Npc1 protein compared to the homozygous normal (Npc1+/+) mouse, was used to determine whether decreased Npc1 gene dosage was associated with weight gain when fed either a low‐fat (10% kcal fat) or high‐fat (45% kcal fat) diet beginning at 4 weeks of age until 20 weeks of age. The results indicated that Npc1+/? mice had significantly increased weight gain beginning at 13 weeks of age when fed a high‐fat diet, but not when fed a low‐fat diet, compared to the Npc1+/+ mice fed the same diet. With respect to mice fed a high‐fat diet, the Npc1+/? mice continued to have significantly increased weight gain to 30 weeks of age. At this age, the Npc1+/? mice were found to have increased liver and inguinal adipose weights compared to the Npc1+/+ mice. Therefore, decreased Npc1 gene dosage resulting in decreased Npc1 protein function, promoted weight gain in mice fed a high‐fat diet consistent with a gene–diet interaction.  相似文献   

12.
13.
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm−/− mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/− mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression.  相似文献   

14.
Loss‐of‐function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin‐insufficient mice, both Grn+/? and Grn ?/? , are used as models of FTD due to GRN mutations, with Grn+/? mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn+/? mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn ?/? mice. In this study, we investigated how the tube test phenotype of progranulin‐insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn+/? mice: at 6–8 months, Grn+/? mice were more dominant than wild‐type littermates, while after 9 months of age, Grn+/? mice were less dominant. In contrast, Grn ?/? mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn+/? mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6–9 months, Grn+/? mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9–16 months Grn+/? mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn+/? mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior.  相似文献   

15.
Paracrine cell-to-cell interactions are crucial events during atherogenesis, however, little is known on the role of gap junctional communication during this process. We recently demonstrated increased expression of Cx43 in intimal smooth muscle cells and in a subset of endothelial cells covering the shoulder of atherosclerotic plaques. The purpose of this study was to examine the role of Cx43 in the development of atherosclerosis in vivo. Atherosclerosis-susceptible LDL receptor-deficient (LDLR?/?) mice were intercrossed with mice heterozygous for Cx43 (Cx43+/?mice). Male mice with normal (Cx43+/+LDLR?/?) or reduced (Cx43+/?LDLR?/?) Cx43 level of 10 weeks old were fed a cholesterol-rich diet (1.25%) for 14 weeks. Both groups of mice showed similar increases in serum lipids and body weight. Interestingly, the progression of atherosclerosis was reduced by 50% (P < 0.01) in the thoraco-abdominal aorta and in the aortic roots of Cx43+/?LDLR?/?mice compared with Cx43+/+LDLR?/?littermate controls. In addition, atheroma in Cx43+/?LDLR?/?mice contained fewer inflammatory cells and exhibited thicker fibrous caps with more collagen and smooth muscle cells, important features associated, in human, with stable atherosclerotic lesions. Thus, reducing Cx43 expression in mice provides beneficial effects on both the progression and composition of the atherosclerotic lesions.  相似文献   

16.
17.
Aggression is an aspect of social behavior that can be elevated in some individuals with autism spectrum disorder (ASD) and a concern for peers and caregivers. Mutations in Phosphatase and tensin homolog (PTEN), one of several ASD risk factors encoding negative regulators of the PI3K–Akt–mTOR pathway, have been reported in individuals with ASD and comorbid macrocephaly. We previously showed that a mouse model of Pten germline haploinsufficiency (Pten+/?) has selective deficits, primarily in social behavior, along with broad overgrowth of the brain. Here, we further examine the social behavior of Pten+/? male mice in the resident–intruder test of aggression, using a comprehensive behavioral analysis to obtain an overall picture of the agonistic, non‐agonistic and non‐social behavior patterns of Pten+/? mice during a free interaction with a novel conspecific. Pten+/? male mice were involved in less aggression than their wild‐type littermates. Pten+/? mice also performed less social investigation, including anogenital investigation and approaching and/or attending to the intruder, which is consistent with our previous finding of decreased sociability in the social approach test. In contrast to these decreases in social behaviors, Pten+/? mice showed increased digging. In summary, we report decreased aggression and increased repetitive behavior in Pten+/? mice, thus extending our characterization of this model of an ASD risk factor that features brain overgrowth and social deficits.  相似文献   

18.
Neurofibromatosis type‐1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain‐behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1+/?) using T2‐weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1+/? mice have larger volumes than wild‐type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate‐putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure–function correlations were identified concerning social recognition performance and PFC volumes in Nf1+/? mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub‐groups in Nf1+/? mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub‐group of Nf1+/? mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1.  相似文献   

19.
Tissue nonspecific alkaline phosphatase (TNAP) has a well established role in bone homeostasis and in hepatic/biliary conditions. In addition, TNAP is expressed in the inflamed intestine and is relevant to T and B lymphocyte function. TNAP KO mice are only viable for a few days, but TNAP+/? haplodeficient mice are viable. Acute pancreatitis was induced by repeated caerulein injection in WT and TNAP+/? mice. TNAP+/? mice presented an increased expression of Cxcl2, Ccl2, Selplg (P-selectin ligand), Il6 and Il1b in the pancreas. Freshly isolated acinar cells showed a dramatic upregulation of Cxcl1, Cxcl2, Ccl2, Il6, Selpg or Bax in both pancreatitis groups. TNAP+/? cells displayed a 2-fold higher expression of Cxcl2, and a smaller increase in Il6. These findings could be partly replicated by in vitro treatment of primary acinar cells with caerulein. Furthermore, the proinflammatory effect on acinar cells could be partially reproduced in wild type cells treated with the TNAP inhibitor levamisole. TNAP mRNA levels were also markedly upregulated by pancreatitis in acinar cells. Neutrophil infiltration (MRP8+ cells) and activation (IL-6 and TNF production in LPS treated primary neutrophils) were increased in TNAP+/? vs WT mice. Neutrophil depletion greatly attenuated inflammation, indicating that this cell type is mainly responsible for the higher inflammatory status of TNAP+/? mice. In conclusion, our results show that altered TNAP expression results in heightened pancreatic inflammation, which may be explained by an augmented response of neutrophils and by a higher sensitivity of acinar cells to caerulein injury.  相似文献   

20.
Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase‐β (Polβ) levels renders OB neurons vulnerable to degeneration in the 3xTgAD mouse model of AD. We interrogated OB histopathology and olfactory function in wild‐type and 3xTgAD mice with normal or reduced Polβ levels. Compared to wild‐type control mice, Polβ heterozygous (Polβ+/?), and 3xTgAD mice, 3xTgAD/Polβ+/? mice exhibited impaired performance in a buried food test of olfaction. Polβ deficiency did not affect the proliferation of OB neural progenitor cells in the subventricular zone. However, numbers of newly generated neurons were reduced by approximately 25% in Polβ+/? and 3xTgAD mice, and by over 60% in the 3xTgAD/Polβ+/? mice compared to wild‐type control mice. Analyses of DNA damage and apoptosis revealed significantly greater degeneration of OB neurons in 3xTgAD/Polβ+/? mice compared to 3xTgAD mice. Levels of amyloid β‐peptide (Aβ) accumulation in the OB were similar in 3xTgAD and 3xTgAD/Polβ+/? mice, and cultured Polβ‐deficient neurons exhibited increased vulnerability to Aβ‐induced death. Olfactory deficit is an early sign in human AD, but the mechanism is not yet understood. Our findings in a new AD mouse model demonstrate that diminution of BER can endanger OB neurons, and suggest a mechanism underlying early olfactory impairment in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号