首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electron spin resonance (ESR) measurements show that grinding of quartz particles in air produces silicon-based (Si· and SiO·) radicals which decay with aging in air. ESR spin trapping measurements provide evidence for the generation of hydroxyl and possibly superoxide radicals from a suspension of fresh quartz particles. The hydroxyl radical generation potential of the fresh quartz particles decreases on storing in ambient air and on the addition of catalase, superoxide dismutase, desferroxamine. or DMSO. Silica-induced lipid peroxidation also decreases on storing the fresh particles in ambient air. These findings suggest that oxygenated radicals play a role in the biochemical mechanism of pneumoconiosis in general and acute silicosis in particular.  相似文献   

2.
Oxidant-induced DNA damage by quartz in alveolar epithelial cells   总被引:2,自引:0,他引:2  
Respirable quartz has recently been classified as a human carcinogen. Although, studies with quartz using naked DNA as a target suggest that formation of oxyradicals by particles may play a role in the DNA-damaging properties of quartz, it is not known whether this pathway is important for DNA damage in the target cells for quartz carcinogenesis, i.e. alveolar epithelial cells. Therefore, we determined in vitro DNA damage by DQ12 quartz particles in rat and human and alveolar epithelial cells (RLE, A549) using the single cell gel electrophoresis/comet assay. The radical generation capacity of quartz was analysed by electron spin resonance (ESR) and by immunocytochemical analysis of the hydroxyl radical-specific DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in the epithelial cells. Quartz particles as well as the positive control hydrogen peroxide, caused a dose-dependent increase in DNA strand breaks in both cell lines. DNA damage by quartz was significantly reduced in the presence of the hydroxyl-radical scavengers mannitol or DMSO. The involvement of hydroxyl radicals was further established by ESR measurements and was also demonstrated by the ability of the quartz to induce formation of 8-OHdG. In conclusion, our data show that quartz elicits DNA damage in rat and human alveolar epithelial cells and indicate that these effects are driven by hydroxyl radical-generating properties of the particles.  相似文献   

3.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   

4.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   

5.
Distinguishing between short-lived reactive oxygen species like hydroxyl and superoxide radicals is difficult; the most successful approaches employ electron spin resonance (ESR) spin-trapping techniques. Using the spin trap 5,5-dimethyl-l-pyrroline N-oxide (DMPO) to selectively trap various radicals in the presence and absence of ethanol, an HPLC system which is capable of separating the hydroxyl- and superoxide-generated DMPO adduct species has been developed. The radical-generated DMPO adducts were measured with an electrochemical detector attached to the HPLC system and confirmed by spin-trapping techniques. The HPLC separation was carried out on an ODS reverse-phase column with a pH 5.1 buffered 8.5% acetonitrile mobile phase. The advantage of the HPLC system described is that it permits the separation and detection of hydroxyl and superoxide radicals without requiring ESR instrumentation. The antineoplastic bioreductive alkylating agent mitomycin C, when activated by NADPH-cytochrome c reductase, was shown to generate both hydroxyl and superoxide radicals.  相似文献   

6.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

7.
Real-time detection of free radicals generated within the body may contribute to clarify the pathophysiological role of free radicals in disease processes. Of the techniques available for studying the generation of free radicals in biological systems, electron spin resonance (ESR) has emerged as a powerful tool for detection and identification. This article begins with a review of spin trapping detection of oxygen-centered radicals using X-band ESR spectroscopy and then describes the detection of superoxide and hydroxyl radicals by the spin trap 5,5-dimethyl-1-pyrroline-N-oxide and ESR spectroscopy in the perfusate from isolated perfused rat livers subjected to ischemia/reperfusion. This article also reviews the current status of ESR for the in vivo detection of free radicals and in vivo imaging of exogenously administered free radicals. Moreover, we show that in vivo ESR-computed tomography with 3-carbamoyl-2,2,5, 5-tetramethylpyrrolidine-1-oxyl may be useful for noninvasive anatomical imaging and also for imaging of hepatic oxidative stress in vivo.  相似文献   

8.
A novel cyclic nitrone spin trap, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) as a pure white solid has been synthesized for the first time. BMPO offers several advantages over the existing spin traps in the detection and characterization of thiyl radicals, hydroxyl radicals, and superoxide anions in biological systems. The corresponding BMPO adducts exhibit distinct and characteristic electron spin resonance (ESR) spectral patterns. Unlike the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-derived superoxide adduct, the BMPO superoxide adduct does not non-enzymatically decompose to the BMPO hydroxyl adduct. This feature is clearly perceived as a definite advantage of BMPO in its biological applications. In addition, the ESR spectrum of the BMPO glutathionyl adduct (BMPO/*SG) does not fully overlap with the spectrum of its hydroxyl adduct. This spectral feature is again distinctly different from that of DMPO because the ESR spectral lines of DMPO glutathionyl and hydroxyl radical adducts largely overlap. Finally, the ESR spectra of BMPO-derived adducts exhibit a much higher signal-to-noise ratio in biological systems. These favorable chemical and spectroscopic features make BMPO ideal for the detection of superoxide anions, hydroxyl and thiyl radicals in biochemical oxidation and reduction.  相似文献   

9.
Radical scavenging by reconstituted lyophilized powders of water extracts from 16 common vegetables was measured using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radicals, (.OH) or superoxide anion radicals (O2.-), as DMPO-OH or DMPO-OOH spin adducts. On a dry weight basis, eggplant, and red, yellow and green bell pepper extracts showed potent superoxide anion radical scavenging activities (SOD-like activities). Ascorbate oxidase- or heat-treatments, decreased SOD-like activities in bell pepper extracts suggesting that ascorbate accounts for much of their free radical scavenging activity. Eggplant epidermis extract exhibited the most potent hydroxyl radical scavenging and SOD-like activities. Eggplant SOD-like activity did not decrease after ascorbate oxidase treatment, but decreased following ultrafiltration demonstrating that SOD-like activity is partially due to high molecular weight substances. Nasunin, an anthocyanin in eggplant epidermis, showed markedly potent superoxide anion radical scavenging activity, while it inhibited hydroxyl radical generation probably by chelating ferrous ion.  相似文献   

10.
Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 M-1 s-1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.  相似文献   

11.
The spin trapping ESR technique was applied to investigate oxygen-derived radicals in ischemic and post-ischemic rat hearts. Using 5,5'-dimethyl-l-pyrroline-N-oxide, carbon-centered radicals were identified during ischemia and oxy-radical adducts (superoxide anion radical, O.-2 and hydroxyl radicals, .OH) in post-ischemic rat heart. The formation of these spin adducts was inhibited by superoxide dismutase, suggesting that superoxide plays a role in the adducts' formation. The results demonstrate that oxygen derived free radicals are important byproducts of abnormal oxidative metabolism during myocardial ischemic and reperfusion injuries.  相似文献   

12.
The unicellular marine phytoplankton Chattonella marina is known to have toxic effects against various living marine organisms, especially fishes. However, details of the mechanism of the toxicity of this plankton remain obscure. Here we demonstrate the generation of superoxide and hydroxyl radicals from a red tide unicellular organism, C. marina, by using ESR spectroscopy with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and N-t-butyl-alpha-phenylnitrone (PBN), and by using the luminol-enhanced chemiluminescence response. The spin-trapping assay revealed productions of spin adduct of superoxide anion (O2-) (DMPO-OOH) and that of hydroxyl radical (.OH) (DMPO-OH) in the algal suspension, which was not observed in the ultrasonic-ruptured suspension. The addition of superoxide dismutase (500 U/ml) almost completely inhibited the formation of both DMPO-OOH and DMPO-OH, and carbon-centered radicals were generated with the disappearance of DMPO-OH after addition of 5% dimethyl sulfoxide (Me2SO) and 5% ethanol. Furthermore, the generation of methyl and methoxyl radicals, which are thought to be produced by the reaction of hydroxyl radical and Me2SO under aerobic condition, was identified using spin trapping with a combination of PBN and Me2SO. Luminol-enhanced chemiluminescence assay also supported the above observations. These results clearly indicate that C. marina generates and releases the superoxide radical followed by the production of hydroxyl radical to the surrounding environment. The velocity of superoxide generation by C. marina was about 100 times faster than that by mammalian phagocytes per cell basis. The generation of oxygen radical is suggested to be a pathogenic principle in the toxication of red tide to susceptible aquaculture fishes and may be directly correlated with the coastal pollution by red tide.  相似文献   

13.
ESR spin trapping measurements demonstrate generation of hydroxyl (.OH) radical from reduction of vanadate by rat liver microsomes/NADH without exogenous H2O2. Catalase decreases the .OH signal while increasing a vanadium(4+) signal. Addition of superoxide dismutase (SOD) or measurements under an argon atmosphere show decreased .OH radical production. The results suggest that during the one-electron vanadate reduction process by microsomes/NADH, molecular oxygen is reduced to H2O2, which then reacts with vanadium (4+) to generate .OH radical via a Fenton-like mechanism.  相似文献   

14.
Electron spin resonance (ESR) studies on spin trapping of superoxide and hydroxyl radicals by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were performed in NADPH-cytochrome P-450 reductase-paraquat systems at pH 7.4. Spin adduct concentrations were determined by comparing ESR spectra of the adducts with the ESR spectrum of a stable radical solution. Kinetic analysis in the presence of 100 microM desferrioxamine B (deferoxamine) showed that: 1) the oxidation of 1 mol of NADPH produces 2 mol of superoxide ions, all of which can be trapped by DMPO when extrapolated to infinite concentration; 2) the rate constant for the reaction of superoxide with DMPO was 1.2 M-1 s-1; 3) the superoxide spin adduct of DMPO (DMPO-OOH) decays with a half-life of 66 s and the maximum level of DMPO-OOH formed can be calculated by a simple steady state equation; and 4) 2.8% or less of the DMPO-OOH decay occurs through a reaction producing hydroxyl radicals. In the presence of 100 microM EDTA, 5 microM Fe(III) ions nearly completely inhibited the formation of the hydroxyl radical adduct of DMPO (DMPO-OH) as well as the formation of DMPO-OOH and, when 100 microM hydrogen peroxide was present, produced DMPO-OH exclusively. Fe(III)-EDTA is reduced by superoxide and the competition of superoxide and hydrogen peroxide in the reaction with Fe(II)-EDTA seems to be reflected in the amounts of DMPO-OOH and DMPO-OH detected. These effects of EDTA can be explained from known kinetic data including a rate constant of 6 x 10(4) M-1 s-1 for reduction of DMPO-OOH by Fe(II)-EDTA. The effect of diethylenetriamine pentaacetic acid (DETAPAC) on the formation of DMPO-OOH and DMPO-OH was between deferoxamine and EDTA, and about the same as that of endogenous chelator (phosphate).  相似文献   

15.
Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 −1 −1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.  相似文献   

16.
A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct production of superoxide anion and the damaging hydroxyl radical in aqueous and in DMSO suspensions of PM without H2O2. From these results, it is suggested that the cytotoxic and carcinogenic potential of PM can be partly the result of redox cycling of persistent quinoid radicals, which generate large amounts of ROS. In the second phase, the water-soluble fraction of PM elicits DNA damage via reactive transition metal-dependent formation of hydroxyl radicals, implicating an important role for hydrogen peroxide. Together, these data indicate the importance of mechanisms involving redox cycling of quinones and Fenton-type reactions by transition metals in the generation of ROS. These results are supported by recent studies indicating cytotoxic effects, especially mitochondrial damage, by PM extracts and differential mechanisms of cell killing by redox cycling quinones.  相似文献   

17.
When diaziquone was irradiated with 500 nm visible light, hydroxyl free radicals as well as the diaziquone semiquinone were produced. The diaziquone semiquinone is a stable free radical that exhibits a characteristic 5-line electron spin resonance (ESR) spectrum. Since hydroxyl free radicals are short lived, and not observable by conventional ESR, the nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was used to convert hydroxyl radicals into longer lived ESR detectable spin adducts. The formation of hydroxyl radicals was further confirmed by investigating reactions in which hydroxyl radical scavangers, sodium formate and dimethylsulfoxide, compete with the spin traps DMPO or POBN (alpha-(4-Pyridyl-1-oxide)-N- tert-butylnitrone) for hydroxyl free radicals. The products of these scavenging reactions were also trapped with DMPO or POBN. If drug free radicals and hydroxyl free radicals are important in the activity of quinone-containing antitumor agents, AZQ may have a potential in photoirradiation therapy or photodynamic therapy.  相似文献   

18.
The antioxidant properties of aqueous extracts from the dinophycean flagellates Gymnodinium impudicum and Alexandrium affine and the raphidophycean flagellate Chattonella ovata were examined. An electron spin resonance (ESR)-spin trapping method coupled with steady state kinetic analysis showed that all of the extracts directly scavenge superoxide, and that the superoxide scavenging potential of any of the extracts was comparable to that of L-ascorbic acid. As for hydroxyl radical scavenging, the Fenton reaction and the method of ultraviolet radiation to hydrogen peroxide were used as hydroxyl radical generation systems. All of extracts reduced the level of hydroxyl radicals in both of the systems, indicating that the extracts also directly scavenge hydroxyl radicals. Since the levels of phenolic compounds did not correlate with the antioxidant activities of the extracts, substances other than phenolic compounds also appeared to be attributable to the activities. It is of our interest that the scavenging activities of extract from G. impudicum against superoxide and hydroxyl radicals were increased by heat exposure at 100 degrees C and 200 degrees C respectively. Although the reason for the increased activities of the aqueous extract from G. impudicum is not clear, the heat-resistance of the extract from G. impudicum might make it a desirable antioxidant.  相似文献   

19.
The free radical scavenging activity of the Japanese herbal medicine, Toki-Shakuyaku-San (TJ-23; TSUMURA & Co., Tokyo, Japan), was examined using electron spin resonance (ESR) spectrometry. TJ-23 scavenged 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), superoxide (O2 ), and hydroxyl radicals (·OH) dose-dependently. It also diminished carbon centered radicals (·C) generated by oxidative stress and inhibited thiobarbituric acid-reactive substances (TBARS) formation in mouse cortex homogenate. In addition, the effect of TJ-23 on the concentration of neurotransmitters and TBARS formation, and superoxide dismutase (SOD) activity in the cortex, hippocampus and striatum of the aged rat brain was studied. The concentrations of the metabolites of monoamines, glutamate and glutamine were decreased by 4 weeks of oral administration of TJ-23. The SOD activity of mitochondrial fraction was increased and TBARS formation was significantly suppressed. These results suggest that TJ-23 has an antioxidant action and would have a prophylactic effect against free radical-mediated neurological diseases associated with aging.  相似文献   

20.
The present investigation was made to evaluate biologically relevant quinones as possible catalysts in the generation of hydroxyl radicals from hydrogen peroxide and superoxide radicals. ESR spectra demonstrated that menadione, plastoquinone, and ubiquinone derivatives could all be reduced to their semiquinone forms by electron transfer from superoxide radicals. Reductive homolytic cleavage of H2O2 was observed to be dependent upon the presence of semiquinones in the reaction medium. Our data strongly support the concept that quinones normally involved in physiological processes may also play a role as catalysts of the Haber-Weiss reaction in the biological generation of hydroxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号