首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stem cells are the only proliferating cells in flatworms and can be eliminated by irradiation with no damage to differentiated cells. We investigated the effect of fractionated irradiation schemes on Macrostomum lignano, namely, on survival, gene expression, morphology and regeneration. Proliferating cells were almost undetectable during the first week post-treatment. Cell proliferation and gene expression were restored within 1 month in a dose-dependent manner following exposure to up to 150 Gy irradiation. During recovery, stem cells did not cross the midline but were restricted within lateral compartments. An accumulated dose of 210 Gy resulted in a lethal phenotype. Our findings demonstrate that M. lignano represents a suitable model system for elucidating the effect of irradiation on the stem cell system in flatworms and for improving our understanding of the recovery potential of severely damaged stem-cell systems.  相似文献   

2.
《Insect Biochemistry》1976,6(2):123-130
The effect of the eukaryotic RNA polymerase inhibitor α-amanitin on RNA synthesis in adult female Aedes aegypti was studied. Administration of the toxin 24 hr, prior to a 2 hr pulse of radioactive precursors inhibited incorporation of the label into total RNA by approximately 40%. Nuclear RNA and microsomal RNA showed 25% and 15% less radioactivity, respectively, than the saline injected controls. Total soluble 4S RNA was unaffected by α-amanitin but heterodisperse RNA incorporated 50% less label than controls. Using both nitrocellulose membrane filters and poly(U)-sepharose chromatography it was found that the synthesis of poly(A)-containing microsomal RNA was severely inhibited by the toxin. It was concluded that the major long term effect of α-amanitin in these adults is to inhibit messenger RNA synthesis and to have little if any effect on ribosomal or 4S RNA.  相似文献   

3.
Male mice of the Q strain were exposed to 60Co γ-rays at 2 Gy and 2 × 2 Gy separated by increasing time intervals (from 0 min to 4 min). The chromosome translocations induced in spermatogonia were scored at diakinesis-metaphase I. A significant decrease of the translocation frequency at time intervals higher than 2 min was observed, confirming results obtained with plant materials.  相似文献   

4.
We studied the effects of a single post whole-body low-dose irradiation (50 cGy of γ-ray) on mice with ferric nitrilotriacetate (Fe3+-NTA)-induced transient hepatopathy. As a result, low-dose irradiation accelerated the rate of recovery. Based on the changes in glutamic oxaloacetic transaminase (GOT) activities, glutamic pyruvic transaminase (GPT) activities and lipid peroxide levels, it was shown that hepatopathy was improved by low-dose irradiation 3 h after Fe3+-NTA administration. This may be because of the enhancement of antioxidant agents such as total glutathione (GSH + GSSG), glutathione peroxidase (GPX), glutathione reductase (GR) and γ-glutamylcysteine synthetase (γ-GCS) by low-dose irradiation. These findings suggest that low-dose irradiation relieved functional disorders at least in the livers of mice with active oxygen species related diseases.  相似文献   

5.
Dehydroepiandrosterone (DHEA) modulates sensitivity to radiation-induced injury in human neuroglioma cells (H4) through effects on Akt signalling by glutathione (GSH)-dependent redox regulation. Previous treatment of H4 cells with DHEA for 18 h reduced the γ-ray-induced phosphorylation of Akt, activated p21waf1 synthesis and up-regulated phosphorylation of Rb independent of p53. These reactions were followed by a decrease in cell number and an increase in apoptosis and G2/M checkpoint arrest. The suppression of phosphorylation of Akt by DHEA was due to regulation of the dephosphorylation by protein phosphatase 2A (PP2A). DHEA up-regulated the expression of γ-glutamylcysteine synthetase, a rate-limiting enzyme of glutathione (GSH) synthesis, and the levels of GSH to maintain PP2A activity. The results suggested that DHEA increases the sensitivity of cells to γ-ray irradiation by inducing apoptosis and cell cycle arrest through GSH-dependent regulation of the reduced form of PP2A to down-regulate the Akt signalling pathway.  相似文献   

6.
The elevation of endogenous thiol-related antioxidants and free radical scavenging enzymes in the brain of C57BL/6 female mice after low-dose γ-ray irradiation and its inhibitory effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced brain damage were investigated. The brain level of the reduced form of glutathione (GSH) increased soon after irradiation with 50 cGy of γ-rays, reached a maximum at 3 h post-treatment, and remained elevated until 12 h. Thioredoxin (TRX) was also transiently increased after irradiation. The activities of free radical scavenging enzymes, including Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, were significantly induced after irradiation as well. Cerebral malondialdehyde was remarkably elevated by MPTP treatment, and this elevation was suppressed by pre- irradiation (50 cGy). The contents of GSH and TRX were significantly decreased by MPTP treatment in comparison with those of the control group. These reductions both seemed to be attenuated by pre-irradiation with γ-rays. These results suggest that low-dose γ-ray irradiation induces endogenous antioxidative potency in the brain of mice and might be effective for the prevention and/or therapy of various reactive oxygen species-related neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease.  相似文献   

7.
The effects of low-dose γ-rays on the embryonic development of animal cells are not well studied. The mouse melanocyte is a good model to study the effects of low-dose γ-rays on the development of animal cells, as it possesses visible pigment (melanin) as a differentiation marker. The aim of this study is to investigate in detail the effects of low-dose γ-rays on embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs at cellular level. Pregnant females of C57BL/10J mice at nine days of gestation were whole-body irradiated with a single acute dose of γrays (0.1, 0.25, 0.5, and 0.75 Gy), and the effects of γ-rays were studied by scoring changes in the development of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes at 18 days in gestation. The number of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes in the dorsal and ventral skins was markedly decreased even at 0.1 Gy-treated embryos (P < 0.001), and gradually decreased as dose increased. The effects on the ventral skin were greater than those on the dorsal skin. The dramatic reduction in the number of melanocytes compared to melanoblasts was observed in the ventral skin, but not in the dorsal skin. These results suggest that low-dose γ-rays provoke the death of melanoblasts and melanocytes, or inhibit the proliferation and differentiation of melanoblasts and melanocytes, even at the low dose.  相似文献   

8.

Spores of the genus Bacillus are able to resist ionizing radiations and therefore they are a suitable biological model for studies in Astrobiology, i.e. the multidisciplinary approach to the study of the origin and evolution of life on Earth and in the universe. The resistance to γ-radiation is an important issue in Astrobiology in relation to the search for bacterial species that could adapt to life in space. This study investigates the resistance of spores of the thermophilic bacteria Parageobacillus thermantarcticus to γ-rays. The analysis of spores’ response to irradiation at a molecular level is performed by means of Raman spectroscopy that allows to get insights in the sequence of events taking place during inactivation. The role of the γ-rays’ dose in the inactivation of spores is also investigated, allowing to highlight the mechanism(s) of inactivation including DNA damage, protein denaturation and calcium dipicolinate levels.

  相似文献   

9.
Bulk populations of T-cell receptor (Tcr) -expressing splenocytes from different inbred strains of mice were examined for the diversity of Tcr proteins. Immunoprecipitations with anti-C1/2, anti-C4, and anti-V1 sera demonstrated that splenocytes from B10.BR, C57BL/6, and C57L strains of mice expressed the same array of Tcr proteins, namely V1-C2, V1-C4, and V2-C1, although the Tcr heterodimers observed for each of these strains were biochemically distinct. Examination of bulk splenic Tcr heterodimers from several other inbred strains of mice demonstrated that each of the strains could be categorized into one of three basic phenotypes. For several reasons, the differences observed between the strains appeared to be solely dependent on polymorphisms of the Tcrg loci. First, F1 mice co-expressed both parental Tcr phenotypes. Second, the distinguishing polymorphism between mice of phenotype 1 and phenotypes 2 or 3 was due to the presence of an N-linked glycosylation site within the Tcrg-C1 gene segment, previously described for BALB.B and C57BL/6 Tcrg-C1 genes. Finally, the V1-C4 polymorphism between mice of phenotype 3 and phenotypes 1 or 2 was due to differences in core protein size. Furthermore, the three defined Tcr chains were expressed independently of the major histocompatibility complex (MHC) haplotype. Although no striking qualitative differences in Tcr heterodimers were observed between strains (including those with autoimmune disorders), a quantitative difference in the relative amount of C4-encoded proteins was observed on Tcr splenocytes from both newborn euthymic and adult athymic mice when compared to adult Tcr splenocytes from euthymic mice. These results demonstrate that genetic polymorphisms exist among different mouse strains and suggest that selective developmental pressures may govern Tcr expression. Offprint requests to: J. A. Bluestone  相似文献   

10.
The immediate-early response gene 5 (IER5) was previously shown, using microarray analysis, to be upregulated by ionizing radiation. Here we further characterized the dose- and time-dependency of radiation-induced expression of IER5 at doses from 0.5 to 15 Gy by quantitative real-time PCR analyses in HeLa cells and human lymphoblastoid AHH-1 cells. A radiation-induced increase in the IER5 mRNA level was evident 2 h after irradiation with 2 Gy in both cell lines. In AHH-1 cells the expression reached a peak at 4 h and then quickly returned to the control level, while in HeLa cells the expression only remained increased for a short period of time at around 2 h after irradiation before returning to the control. After high-dose irradiation (10 Gy), the induction of the IER5 expression was lower and delayed in AHH-1 cells as compared with 2-Gy irradiated cells. In HeLa cells, at this dose, two peaks of increased expression were observed 2 h and 12–24 h post-irradiation, respectively. RNA interference technology was employed to silence the IER5 gene in HeLa cells. siRNA-mediated suppression of IER5 resulted in an increased proliferation of HeLa cells. Cell growth and survival analyses demonstrated that suppression of IER5 significantly increased the radioresistance of HeLa cells to radiation doses of up to 6 Gy, but barely affected the sensitivity of cells at 8 Gy. Moreover, suppression of IER5 potentiated radiation-induced arrest at the G2-M transition and led to an increase in the fraction of S phase cells. Taken together, we propose that the early radiation-induced expression of IER5 affects the radiosensitivity via disturbing radiation-induced cell cycle checkpoints.  相似文献   

11.
The principal aim of the study was to investigate the effect of low-dose-irradiation on lipid peroxidation (LPO) in murine bone marrow. To this end, the degree of LPO in suspensions of microsomes of murine bone marrow cells (BMC) was determined in terms of malondialdehyde (MDA) formation after whole-body or in vitro exposure to various doses of-radiation. These effects were compared to some extent with similar effects in liver and spleen preparations. As to the effect of-irradiation on LPO in BMC, the response depends on the dose level and on whether whole-body or in vitro exposures are involved. Whole-body irradiation did not result in an increase in LPO in BMC microsomes, even at such high doses as 15 Gy, although hepatic microsomes showed a marked increase. In contrast, in vitro irradiation of BMC microsomes with 0.1, 10 and 50 Gy brought about an increase in LPO. This increase was already significant (P <0.05) at 0.1 Gy following a post-irradiation incubation and substantial at 50 Gy, even without subsequent incubation. The results show that low doses of-irradiation are able to induce an elevation of LPO in murine BMC microsomes, but only after in vitro irradiation. In the case of whole-body irradiation cellular radical scavengers and other metabolic reactions may prevent a measurable increase in LPO. This is partly illustrated by the case of vitamin-E deficiency, where a substantial increase in LPO in BMC microsomes is observed even without-irradiation in comparison with euvitaminotic mice because normally occurring radicals are not scavenged sufficiently.On leave from the University of Rochester, School of Medicine and Dentistry, Rochester, NY 14678, USA  相似文献   

12.
Carbon irradiation due to its higher biological effectiveness relative to photon radiation is a concern for toxicity to proliferative normal gastrointestinal (GI) tissue after radiotherapy and long-duration space missions such as mission to Mars. Although radiation-induced oxidative stress is linked to chronic diseases such as cancer, effects of carbon irradiation on normal GI tissue have not been fully understood. This study assessed and compared chronic oxidative stress in mouse intestine and colon after different doses of carbon and γ radiation, which are qualitatively different. Mice (C57BL/6J) were exposed to 0.5 or 1.3?Gy of γ or carbon irradiation, and intestinal and colonic tissues were collected 2 months after irradiation. While part of the tissues was used for isolating epithelial cells, tissue samples were also fixed and paraffin embedded for 4 µm thick sections as well as frozen for biochemical assays. In isolated epithelial cells, reactive oxygen species and mitochondrial status were studied using fluorescent probes and flow cytometry. We assessed antioxidant enzymes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in tissues and formalin-fixed tissue sections were stained for 4-hydroxynonenal, a lipid peroxidation marker. Data show that mitochondrial deregulation, increased NADPH oxidase activity, and decreased antioxidant activity were major contributors to carbon radiation-induced oxidative stress in mouse intestinal and colonic cells. When considered along with higher lipid peroxidation after carbon irradiation relative to γ-rays, our data have implications for functional changes in intestine and carcinogenesis in colon after carbon radiotherapy as well as space travel.  相似文献   

13.
Activity of membrane-bound -glutamyl transpeptidase (-GTP) was examined in various regions of mouse brain, in capillaries of the cerebral cortex and in telencephalic choroid plexuses. The level of activity in the capillaries was double and that of the choroid plexus nine times that of the -GTP activity found in the brain, septum, hippocampus, hypothalamus, thalamus, cerebellum, frontal cortex, pons, medulla oblongata, and amygdala. Histochemically the -GTP activity was demonstrated in the surface membranes of choroidal cells and in the endothelium of small capillaries.The activities of -GTP of cerebral cortex, choroid plexus, and capillaries from rabbit were 5–17 times greater than those from corresponding areas of mouse brain. While 30 mM methionine stimulated (in vitro) the enzyme from mouse brain, no such effect was observed with the enzyme activity from rabbit brain. The -GTP activity from the capillaries of cerebral cortex of both mouse and rabbit was not effected by the presence of methionine.These findings suggest existence of differences in the specificity of -GTP activity in these two species.  相似文献   

14.

Background

Cardiovascular disease is prevalent and frequently unrecognized in patients with chronic obstructive pulmonary disease (COPD). NT-proBNP is an established risk factor in patients with heart failure. NT-proBNP may also be released from the right ventricle. Thus serum NT-proBNP may be elevated during acute exacerbations of COPD (AECOPD). The prognostic value of NT-proBNP in patients hospitalized with AECOPD is sparsely studied. Our objective was to test the hypothesis that NT-proBNP independently predicts long term mortality following AECOPD.

Methods

A prospective cohort study of 99 patients with 217 admissions with AECOPD. Clinical, electrocardiographic, radiological and biochemical data were collected at index and repeat admissions and analyzed in an extended survival analysis with time-dependent covariables.

Results

Median follow-up time was 1.9 years, and 57 patients died during follow-up. NT-proBNP tertile limits were 264.4 and 909 pg/mL, and NT-proBNP in tertiles 1 through 3 was associated with mortality rates of 8.6, 35 and 62 per 100 patient-years, respectively (age-adjusted log-rank p<0.0001). After adjustment for age, gender, peripheral edema, cephalization and cTnT in a multivariable survival model, the corresponding hazard ratios for dying were 2.4 (0.95-6.0) and 3.2 (1.3-8.1) (with 95% confidence intervals in parentheses, p-value for trend 0.013).

Conclusions

NT-proBNP is a strong and independent determinant of mortality after AECOPD.  相似文献   

15.
The distribution of lipid peroxidation products in liposomes after γ-irradiation at various doses was studied. Increases in thiobarbituric-acid-reactive substances, in the absorbance at 232 nm and in hydroperoxides were observed mainly in liposomal membranes after relatively low doses of irradiation, while carbonyl compounds were distributed both inside and outside the membranes. After higher doses of irradiation, however, the absorbance at 232 nm and the amount of hydroperoxides reached a maximal level in the membrane portion and then decreased when the decomposition products were released from the membranes. Under this condition, malondialdehyde and other carbonyl compounds were increased mainly in the medium of liposomal suspension. These results are discussed with reference to the lipid peroxidation process which is induced quantitatively by ionizing radiation.  相似文献   

16.

Aim

In this study, we investigated γH2AX foci as markers of DSBs in normal brain and brain tumor tissue in mouse after BNCT.

Background

Boron neutron capture therapy (BNCT) is a particle radiation therapy in combination of thermal neutron irradiation and boron compound that specifically accumulates in the tumor. 10B captures neutrons and produces an alpha (4He) particle and a recoiled lithium nucleus (7Li). These particles have the characteristics of extremely high linear energy transfer (LET) radiation and therefore have marked biological effects. High LET radiation causes severe DNA damage, DNA DSBs. As the high LET radiation induces complex DNA double strand breaks (DSBs), large proportions of DSBs are considered to remain unrepaired in comparison with exposure to sparsely ionizing radiation.

Materials and methods

We analyzed the number of γH2AX foci by immunohistochemistry 30 min or 24 h after neutron irradiation.

Results

In both normal brain and brain tumor, γH2AX foci induced by 10B(n,α)7Li reaction remained 24 h after neutron beam irradiation. In contrast, γH2AX foci produced by γ-ray irradiation at contaminated dose in BNCT disappeared 24 h after irradiation in these tissues.

Conclusion

DSBs produced by 10B(n,α)7Li reaction are supposed to be too complex to repair for cells in normal brain and brain tumor tissue within 24 h. These DSBs would be more difficult to repair than those by γ-ray. Excellent anti-tumor effect of BNCT may result from these unrepaired DSBs induced by 10B(n,α)7Li reaction.  相似文献   

17.
P. Hahn 《Life sciences》1981,28(9):1057-1060
The ability of the rat liver to synthesize camitine from γ-butyrobetaine increases from low values in the fetus to adult values on the 8th day after birth. The rate of synthesis of camitine is greater when determined in the high-speed supernatant than in the low-speed supernatant of the liver. No synthesis could be shown to occur in neonatal rat kidney or neonatal brown adipose tissue.  相似文献   

18.
Further studies of the transaminase responsible for the first committed step in alkaloid formation in Conium maculatum have shown the L-alanine: 5-ketooctanal transaminase to occur in both the mitochondria and chloroplast. Experiments suggest that these enzymes are the isoenzymes Transaminase A and B respectively previously isolated by the author. It is suggested that the chloroplast enzyme is normally responsible for alkaloid production.  相似文献   

19.
The regulation of glutamic decarboxylase (GAD) activity is undoubtedly the key to the control of the steady-state concentrations of 4-aminobutyric acid (GABA) in the central nervous system. Those factors that might influence GAD activity are reviewed. They include repression and induction of GAD synthesis; the interconversion of the holo- and apo-form of GAD; the availability of substrate and cofactor; the competitive inhibition of GAD by endogenous substances, including GABA; and the involvement of calcium ions in whole-cell preparations. Where possible mechanisms of action are described, and the likelihood that each is of physiological importance is discussed. Experiments are suggested that would help clarify (1) the role of GABA in GAD repression; (2) the possible phosphorylation of GAD; and (3) the existence of multiple forms of the enzyme. In addition, a kinetic mechanism is proposed to explain the possible regulation of GAD by the interconversion of the holo- and apo-forms of the enzyme. It is concluded that the overriding factors responsible for GAD regulation are not yet understood. However, a possible mechanism relying on the direct feedback action of GABA on GAD activity has many attractive features.  相似文献   

20.
γ-Secretase plays an important function in the development of Alzheimer disease, since it participates in the production of the toxic amyloid β-peptide (Aβ) from the amyloid precursor protein (APP). Besides APP, γ-secretase cleaves many other substrates resulting in adverse side effects when γ-secretase inhibitors are used in clinical trials. γ-Secretase is a membrane bound protein complex consisting of at least four subunits, presenilin (PS), nicastrin, Aph-1 and Pen-2. PS and Aph-1 exist as different homologs (PS1/PS2 and Aph-1a/Aph-1b, respectively), which generates a variation in complex composition. PS1 and PS2 appears to have distinct roles since PS1 is essential during embryonic development whereas PS2 deficient mice are viable with a mild phenotype. The molecular mechanism behind this diversity is, however, largely unknown. In order to investigate whether PS1 and PS2 show different substrate specificity, we used PS1 or PS2 deficient mouse embryonic fibroblasts to study the processing on the γ-secretase substrates APP, Notch, N-cadherin, and ephrinB. We found that whereas depletion of PS1 severely affected the cleavage of all substrates, the effect of PS2 depletion was minor. In addition, less PS2 was found in active γ-secretase complexes. We also studied the effect of PS2 depletion in adult mouse brain and, in concordance with the results from the mouse embryonic fibroblasts, PS2 deficiency did not alter the cleavage of the two most important substrates, APP and Notch. In summary, this study shows that the contribution of PS2 on γ-secretase activity is of less importance, explaining the mild phenotype of PS2-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号