首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Ethanol is metabolized to acetaldehyde by hepatic microsomes in a reaction that requires cytochrome P-450, and a role for hydroxyl radicals has been implicated in this process. However, previous spin trapping experiments have failed to demonstrate the production of hydroxyl radicals by liver microsomes unless iron or other metal catalysts have been added. The spin trapping experiments described in this report provide unambiguous evidence that liver microsomes form hydroxyl radicals during oxidation of NADPH, that the addition of exogenous iron is unnecessary for this process, and that hydroxyl radicals participate in the metabolism of ethanol. Liver microsomes are known to metabolize ethanol to the 1-hydroxyethyl radical, and our experimental data support the conclusion that a significant part of the production of the 1-hydroxethyl radical occurs as a consequence of hydroxyl radical attack on ethanol. Lack of previous observation of microsomal hydroxyl radical production in spin trapping experiments is shown to be related to the contamination of the microsomes with catalase.  相似文献   

2.
《Free radical research》2013,47(4):213-222
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

3.
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

4.
《Free radical research》2013,47(1-5):243-249
By using e.s.r. spectroscopy coupled with the spin trapping technique we have detected the formation of free radical intermediates by rat liver microsomes incubated with either ethanol, 2-propanol or 2-butanol in the presence of a NADPH regenerating system and 4-pyridyl-l-oxide-t-butyl nitrone (4-POBN) as spin trap. The e.s.r. spectra have been identified as due to the hydroxyalkyl free radical adducts of 4-POBN.

The free radical formation depends upon the activity of the microsomal monoxygenase system and is blocked by omitting NADP+ from the incubation mixture, by anaerobic incubation or by enzyme denaturation. The involvement of hydroxyl radicals (OH) produced through a Fenton-type reaction from endogenously formed hydrogen peroxide is suggested by the opposite effects exerted on the e.s.r. signal intensity by azide and catalase. Consistently, iron chelation by desferrioxamine inhibits the free radical formation, while the supplementation of EDTA-iron increases it by several fold. Inhibitors of cytochrome P450-dependent monoxygenase system reduce to various extents the production of free radical intermediates suggesting that reactive oxygen species might be formed at the active site of cytochrome P450 where they react with alkyl alcohol molecules.

The data presented support the hypothesis that free radical species are generated during the microsomal metabolism of alcohols and suggest the possibility that ethanol-derived radicals might play a role in the pathogenesis of the liver lesions consequent upon alcoholic abuse.  相似文献   

5.
Electron spin resonance (ESR) measurments provide direct evidence for the involvement of Cr(V) in the reduction of Cr(VI) by NAD(P)H. Addition of hydrogen peroxide (H2O2) to NAD(P)H-Cr(VI) reaction mixtures suppresses the Cr(V) signal and generates hydroxyl (OH) radicals (as detected via spin trapping), suggesting that Cr(V) reacts with H2O2 to generate the OH radicals. Reaction between H2O2 and a Cr(V)-glutathione complex. and between H2O2 and several Cr(V)-cdrboxylato complexes also produces OH radicals. These results suggest that Cr(V) complexes catalyze the generation of OH radicals from H2O2, and that OH radicals might play a significant role in the mechanism of Cr(VI) cytotoxicity.  相似文献   

6.
《Free radical research》2013,47(1-2):17-26
Electron spin resonance (ESR) measurments provide direct evidence for the involvement of Cr(V) in the reduction of Cr(VI) by NAD(P)H. Addition of hydrogen peroxide (H2O2) to NAD(P)H-Cr(VI) reaction mixtures suppresses the Cr(V) signal and generates hydroxyl (OH) radicals (as detected via spin trapping), suggesting that Cr(V) reacts with H2O2 to generate the OH radicals. Reaction between H2O2 and a Cr(V)-glutathione complex. and between H2O2 and several Cr(V)-cdrboxylato complexes also produces OH radicals. These results suggest that Cr(V) complexes catalyze the generation of OH radicals from H2O2, and that OH radicals might play a significant role in the mechanism of Cr(VI) cytotoxicity.  相似文献   

7.
The aim of this work was to study the proliferation pathological perturbations of cultured chondrocytes in response to menadione, an oxygen free radicals producing drug. Rabbit articular chondrocytes in monolayer culture were treated with 10-5, 1.5.M-5 and 2.10-5M of menadione during three days. A dose dependent decrease of the proliferative capacity was observed. Flow cytometry analysis revealed a perturbation of the cell cycle progression consisting in an accumulation of cells in the S and G2 + M phases. This growth perturbation was due to oxygen radicals production since a treatment with catalase suppressed these toxic effects. Furthermore, to identify oxygen derived radicals in the cellular suspension of cultures treated with menadione, we used a technique of spin-trapping coupled with electron spin resonance (ESR). The ESR signal corresponding to the DMPO hydroxyl radical adduct (DMPO-OH) has been detected. The spectra observation indicated the actual production of hydroxyl radical. However, superoxide anions have not been identified; this fact can be explained by the low reactivity of these anions with DMPO and by the decomposition of signal DMPO-OOH to DMPO-OH.  相似文献   

8.
《Free radical research》2013,47(6):357-364
The spin trapping chemistry of carbon tetrachloride has been previously investigated in rat liver, both in vitro and in vivo. In addition to the trichloromethyl radical, both a 'carbon-centred' and an 'oxygen-centred' radical have been detected in vitro. These spin adducts have been assigned to 'lipid' and 'lipid oxyl' radicals. However, no specific structural characterization has been provided to date. The spin trapping chemistry of this system was reinvestigated with the use of deuterated α-phenyl N-tert-butyl nitrones to obtain better spectral resolution. Results indicate that the PBN trapped carbon-centred lipid radical is of a primary alkyl type.  相似文献   

9.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

10.
We have established controlled conditions for studying the reaction of chemically and radiolytically produced hydroxyl radical (OH) with 2-deoxy-D-ribose (2-DR). Ascorbate (ASC) or dithiothreitol (DTT) and cuprous or cupric ions were used to generate the OH-radical. The OH-radical was detected using the classical method of measuring the amount of thiobarbituric acid reactive products (TBARP) formed by OH-mediated 2-DR degradation, but using sensitive fluorescent detection of the TBARP production to quantify the OH-radical. All experiments were performed with adequate O2 concentrations. The copper reaction with ASC consumes O2 in a manner that is strongly dependent on copper concentration, and less dependent on ascorbate concentration. For an independent check of the Cu2+ catalyzed ASC oxidation kinetics, the decay of ASC absorbency at 265 nm, as well as the increase of H2O2 absorbency at 240 nm, were also monitored. These spectral changes agree well with the O2 consumption data. TBARP production from 2-DR incubated with a Cu2+–ASC mixture or γ-irradiated were also compared. γ-Irradiation of 2-DR solutions shows a dose and 2-DR concentration dependent increase of TBARP generation. Other electron donors, such as DTT, are more complicated in their mechanism of OH-radical production. Incubation of 2-DR with Cu2+-DTT mixtures shows a delay (50 min) before OH-radical generation is detected. Our results suggest that the Cu2+-ASC reaction can be used to mimic the effects of ionizing radiation with respect to OH-radical generation. The good reproducibility and relative simplicity of the 2-DR method with fluorescence detection indicates its usefulness for the quantitation of the OH-radical generated radiolytically or chemically in carefully controlled model systems. © 1997 Elsevier Science Inc.  相似文献   

11.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

12.
《Free radical research》2013,47(4):269-280
The method of Electron Paramagnetic Resonance (EPR) spectroscopy was used to study the reaction of human methaemoglabin (metHb) with hydrogen peroxide. The samples for EPR measurements were rapidly frozen in liquid nitrogen at different times after H2O2 was added at 3- and 10-fold molar excess to 100 μM metHb in 50 mM phosphate buffer, pH 7.4, 37°C. Precautions were taken to remove all catalase from the haemoglobin preparation and no molecular oxygen evolution was detected during the reaction. On addition of H2O2 the EPR signals (- 196°C) of both high spin and low spin metHb rapidly decreased and free radicals were formed. The low temperature (- 196°C) EPR spectrum of the free radicals formed in the reaction has been deconvoluted into two individual EPR signals, one being an anisotropic signal (g° = 2.035 and g° = 2.0053), and the other an isotropic singlet (g = 2.0042, AH = 20 G). The former signal was assigned to peroxyl radicals. As the kinetic Pehaviour of both peroxyl (ROO*) and nonperoxyl (P*) free radicals were similar, we concluded that ROO* radicals are not formed from P* radicals by addition of O2. The time courses for both radicals showed a steady state during the time required for H2O2 to decompose. Once all peroxide was consumed, the radical decayed with a first order rate constant of 1.42 ± 10-3 s-1 (1:3 molar ratio). The level of the steady state was higher and its duration shorter at lower initial concentration of H2O2. The formation of the rhombic Fe(III) non-haemcentres with g = 4.35 was found. Their yield was proportional to the H2O2 concentration used and the centers were ascribed to haem degradation products. The reaction was also monitored by EPR spectroscopy at room temperature. The kinetics of the free radicals measured in the reaction mixture at room temperature was similar to that observed when the fast freezing method and EPR measurement at —196°C were used.  相似文献   

13.
The formation of hydroxyl radicals in beta-glucan solutions treated with ascorbic acid and iron(II) was demonstrated by ESR spin trapping based methods. Two different spin traps were tested, namely DMPO which is commonly used to detect hydroxyl radicals, and POBN often used to detect carbon centered radicals. The experiments performed showed that the presence of iron(II) with DMPO led to low DMPO-OH adduct stability and further to DMPO dimerization. The level of hydroxyl radicals formed during the beta-glucan radical mediated degradation was evaluated using two ESR spin trapping methods based on the use POBN together with either 2% (v/v) EtOH or DMSO. The addition of ascorbic acid together with iron(II) in beta-glucan solution led to an immediate maximal production of hydroxyl radicals while the presence of ascorbic acid alone led to a progressive production of radical. Further hydroxyl radicals were found to be formed when iron(II) was added alone in beta-glucan solutions. The viscosity loss observed in the three last mentioned beta-glucan solutions were found to relate with the formation of hydroxyl radicals. These data confirm the involvement of hydroxyl radical in the beta-glucan degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号