首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

2.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

3.
An alanine transport carrier was partially purified from brush border membranes of rabbit small intestine. The alanine carrier activity was not solubilized with 0.4% deoxycholate but recovered in the detergent-insoluble fraction. The detergent-insoluble proteins were reconstituted into proteoliposomes with soybean phospholipids. The reconstituted proteoliposomes were capable of uptake of alanine driven by an electrochemical potential of Na+. The initial rate of alanine uptake into the proteoliposomes was 90 pmoles/mg protein/sec, which was 15-fold higher than that observed with the native membrane vesicles. The uptake of alanine was effectively suppressed by various neutral amino acids but not by either cationic or anionic amino acids.  相似文献   

4.
1. Basolateral membranes of rat small intestine were first solubilized in a 0.6% cholate buffer and then the insoluble fraction was reextracted with a 1.2 or 1.6% cholate buffer. 2. Proteoliposomes reconstituted from the 1.2 or 1.6% cholate-extracted membrane fraction demonstrated characteristic Na+-independent D-glucose transport of the native basolateral membrane vesicles: inhibitable by mercuric chloride and D-galactose. 3. To further purify this D-glucose transport system, the 1.6% cholate-extracted membrane fraction was chromatographed on either hydroxylapatite, concanavalin A, wheat-germ lectin or castor bean lectin-120 affinity gels. 4. Proteoliposomes reconstituted from the membrane proteins adsorbed on hydroxylapatite and subsequently passed through agarose-castor bean lectin-120 showed a 12-fold enrichment of Na+-independent D-glucose transport activity over that of the native membrane vesicles. 5. SDS-electrophoretic analysis showed that the protein composition of the hydroxylapatite-castor bean lectin-120 treated fraction was much simpler than that of both 1.6% cholate-extracted fraction and the native membrane vesicles.  相似文献   

5.
The voltage-sensitive sodium channel of rat brain synaptosomes was solubilized with sodium cholate. The solubilized sodium channel migrated on a sucrose density gradient with an apparent S20,w of approximately 12 S, retained [3H]saxitoxin ([3H]STX) binding activity that was labile at 36 degrees C but no longer bound 125I-labeled scorpion toxin (125I-ScTX). Following reconstitution into phosphatidylcholine vesicles, the channel regained 125I-ScTX binding and thermal stability of [3H]STX binding. Approximately 50% of the [3H]STX binding activity and 58% of 125I-ScTX binding activity were recovered after reconstitution. The reconstituted sodium channel bound STX and ScTX with KD values of 5 and 10 nM, respectively. Under depolarized conditions, veratridine enhanced the binding of 125I-ScTX with a K0.5 of 20 microM. These KD and K0.5 values are similar to those of the native synaptosome sodium channel. 125I-ScTX binding to the reconstituted sodium channel, as with the native channel, was voltage dependent. The KD for 125I-ScTX increased with depolarization. This voltage dependence was used to demonstrate that the reconstituted channel transports Na+. Activation of sodium channels by veratridine under conditions expected to cause hyperpolarization of the reconstituted vesicles increased 125I-ScTX binding 3-fold. This increased binding was blocked by STX with K0.5 = 5 nM. These data indicate that reconstituted sodium channels can transport Na+ and hyperpolarize the reconstituted vesicles. Thus, incorporation of solubilized synaptosomal sodium channels into phosphatidylcholine vesicles results in recovery of toxin binding and action at each of the three neurotoxin receptor sites and restoration of Na+ transport by the reconstituted channels.  相似文献   

6.
Solubilization and reconstitution of the renal phosphate transporter   总被引:1,自引:0,他引:1  
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.  相似文献   

7.
The catecholamine transporter from bovine chromaffin granules has been solubilized by using low concentrations of sodium cholate in the presence of phospholipids. The functional solubilized protein has been incorporated into liposomes after removal of the detergent either by gel filtration or by dialysis. Reserpine-sensitive accumulation against a concentration gradient is achieved by artifically imposing a pH gradient across the membrane. In the reconstituted system adenosine 5'-triphosphate (ATP) serves as an energy source only at higher detergent concentrations. The proton-translocating adenosine triphosphatase (ATPase) is solubilized in parallel with the increasing efficiency of ATP as an energy source. Several criteria are proposed to distinguish between carrier-mediated (reserpine sensitive) and unmediated transport in the reconstituted system. The reserpine-sensitive process shows affinity and ss presented in this communication provide further support for the contention that concentrative uptake in biogenic amine storage vesicles is driven by a transmembrane pH gradient, which, in the native system, is generated by a proton-translocating ATPase. Moreover, the assays described provide a tool for the isolation and purification of the transport protein.  相似文献   

8.
Plasma membranes, isolated from Ehrlich ascites tumor cells, were dissolved in 2% cholate, 4 M urea and then reformed into liposomes upon dialysis at 4 degrees with exogenous phospholipids. Reconstituted vesicles regain the ability to transport amino acids. Na+ was shown to accelerate the uptake of alpha-aminoisobutyrate, phenylalanine, and methionine, but not leucine or epsilon-aminohexanoic acid. With the reconstituted vesicles, methionine, but not leucine, inhibited the uptake of alpha-aminoisobutyrate. An apparent Km value for alpha-aminoisobutyrate uptake of 3.0 mM was obtained. This value is close to that observed with the intact cells and the native membrane vesicles. A Na+ gradient (high Na+ outside) increased alpha-aminoisobutyrate uptake, whereas a reversed gradient (high Na+ inside) increased alpha-aminoisobutyrate efflux. The latter flux was increased by valinomycin, suggesting electrogenic transport. A modest extent of coupling between a Na+ gradient and uphill flow of alpha-aminoisobutyrate was observed.  相似文献   

9.
Proteins from rabbit kidney brush border membranes were solubilized with 1% Nonidet P-40 (crude membrane proteins) and fractionated according to their isoelectric points (pI) by chromatofocusing. The eluate was pooled into three fractions according to the pI of the samples (1, greater than 6.8; 2, 6.8-5.4; 3, 5.4-4.0). The crude membrane proteins as well as the three fractions were reconstituted into liposomes and transport of Pi was measured by a rapid filtration technique in the presence of an inwardly directed K+ or Na+ gradient. Arsenate-inhibitable Na+-dependent transport of Pi was reconstituted into an osmotically active intravesicular space from both the crude membrane proteins and Fraction 1. In contrast, Fractions 2 and 3 were inactive. Treatment of the crude membrane proteins and the three fractions with the method for extracting phosphorin (a Pi-binding proteolipid found in brush border membranes) yielded Mn2+-dependent binding of Pi characteristic of phosphorin only in the extracts from crude membrane proteins and Fraction 1, the same fractions in which Na+-dependent transport of Pi was found in the reconstituted system. When reconstituted into liposomes, phosphorin was, however, unable to yield Na+-dependent transport of Pi. Moreover, we cannot eliminate the possibility that Na+-Pi transport can occur in the absence of phosphorin, since complete recovery of Na+-Pi transport was not achieved. However, the present data showing localization of the recovered binding and transport systems for Pi in the same protein fraction lend support to the hypothesis that phosphorin might be a constituent of the renal Pi transport system. Whether the presence of phosphorin is necessary or accessory for Na+-dependent Pi transport in intact brush border membrane vesicles or in liposomes reconstituted with crude or purified membrane proteins requires further investigation.  相似文献   

10.
An N-ethylmaleimide-sensitive phosphate transport protein has been isolated from rat liver mitochondria, substantially purified, and reconstituted into phospholipid vesicles. Purified inner mitochondrial membrane vesicles depleted of F1-ATPase by urea treatment proved to be the most satisfactory starting material. Treatment of these membrane vesicles with Triton X-100 resulted in solubilization of the phosphate transport protein. Further purification was achieved using hydroxylapatite powder. Polyacrylamide gel electrophoresis of the purified fraction in sodium dodecyl sulfate indicated the presence of two Coomassie blue-staining bands with apparent Mr's of 30,000 and 35,000. Labeling of the 35,000 Mr band by the Pi transport inhibitor diazobenzene sulfonate was reduced markedly by prior treatment of the mitochondria with the inhibitor N-ethylmaleimide. The purified fraction containing both proteins could be reconstituted into liposomes prepared from purified asolectin. Phosphate efflux from these vesicles was inhibited by N-ethylmaleimide, by the impermeant mercurial agent, p-chloromercuribenzoate, and by diazobenzene sulfonate. Treatment of the purified fraction with N-ethylmaleimide prior to incorporation into liposomes resulted in a reconstituted system incapable of catalyzing Pi efflux. These studies summarize the first detailed attempt to purify the Pi/H+ transport system from rat liver mitochondria and emphasize the need to commence the purification with purified inner membrane vesicles depleted of F1-ATPase. In addition, these studies show that the final fraction contains a reconstitutively active transport system which when incorporated into phospholipid vesicles has its essential sulfhydryl groups oriented outward. Finally, it is shown that the purified fraction also contains a 30,000 Mr component.  相似文献   

11.
Membrane vesicles of Halobacterium halobium R1Wrm bind to an aspartic acid-agarose affinity column. After disruption of the bound vesicles by low ionic strength, a protein fraction is eluted from the column with 2.5% cholate in 3 M NaCl. When this fraction is reconstituted with soybean lipids to form proteoliposomes, the proteoliposomes exhibit active aspartate accumulation. Aspartate transport in the reconstituted system is driven by a chemical sodium gradient (out greater than in), exhibits sensitivity to an electrical potential, and is specific for L-aspartate. These characteristics are consistent with observations on aspartate transport in intact membrane vesicles of H. halobium. Initial aspartate transport rates in the reconstituted system are about ninefold enhanced over the native system. The system developed should be useful in future purification schemes and studies of the molecular details of membrane transport.  相似文献   

12.
Secretion of chloride ions via apically located anion-selective channels in epithelia regulates fluid formation and cytosolic Cl- homeostasis. In order to understand the biochemical basis of Cl- channel function, we attempted to isolate this transporter from bovine tracheal apical membranes. Initially, peripheral polypeptides were removed from apically enriched vesicles by washing with alkaline buffer (pH 10.8) containing 2 mM CHAPS. The resulting pellet contained 50-60% of the original protein and displayed 2-fold enhanced Cl- channel activity compared to untreated vesicles. The pellet was treated with Triton X-100, and the solubilized proteins were separated on the cationic exchanger CM-cellufine. Washing the resin with a pH 8.0-8.3 buffer eluted a fraction with enriched Cl- channel activity. This fraction contained less than 5% of the total solubilized protein. A subsequent separation was performed using the anionic exchanger AM-cellufine. The highest activity was found in the fractions eluted by 80-120 mM KCl. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed a major 38,000-Da protein band. This band was electroeluted from the gel under nondenaturing and nonreducing conditions and reconstituted into phosphatidylcholine liposomes. KCl-loaded vesicles containing the purified 38-kDa protein transported up to 5 nmol of 125I-/mg of protein/5 min. This value was 15-fold higher than the uptake measured in vesicles reconstituted with total solubilized membrane proteins and 4-fold higher compared to the CM-cellufine-enriched fraction. The observed 125I- uptake was 90% inhibited by 100 microM 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate or 10 microM valinomycin. In summary, we have developed a biochemical protocol for the isolation of a 38 kDa protein mediating potential-dependent and 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate-sensitive Cl- channel activity.  相似文献   

13.
The site density of the Na2+-Ca2+ exchanger in bovine cardiac sarcolemma was estimated from measurements of the fraction of reconstituted proteoliposomes exhibiting exchange activity. Sarcolemmal vesicles were solubilized with 1% Triton X-100 in the presence of either 100 mM NaCl or 100 mM KCl; after a 20-40-min incubation period on ice, sufficient KCl, NaCl, CaCl2, and soybean phospholipids were added to each extract to give final concentrations of 40 mM NaCl, 120 mM KCl, 0.1 mM CaCl2, and 10 mg/ml phospholipid. These mixtures were then reconstituted into proteoliposomes, and the rate of 45Ca2+ isotopic exchange was measured under equilibrium conditions. Control studies showed that Na+-Ca2+ exchange activity was completely lost if Na+ was not present during solubilization. The difference in 45Ca2+ uptake between vesicles initially solubilized in the presence or absence of NaCl therefore reflected exchange activity and corresponded to 3.1 +/- 0.3% of the total 45Ca2+ uptake by the entire population of vesicles, as measured in the presence of the Ca2+ ionophore A23187. Assuming that each vesicle with exchange activity contained 1 molecule of the Na+-Ca2+ exchange carrier, a site density of 10-20 pmol/mg of protein for the exchanger was calculated. The Vmax for Na+-Ca2+ exchange activity in the proteoliposomes was approximately 20 nmol/mg of protein.s which indicates that the turnover number of the exchange carrier is 1000 s-1 or more. Thus, the Na+-Ca2+ exchanger is a low density, high turnover transport system.  相似文献   

14.
Reconstitution of ciliary membranes containing tubulin   总被引:5,自引:4,他引:1       下载免费PDF全文
Membranes from the gill cilia of the mollusc Aequipecten irradians may be solubilized readily with Nonidet P-40. When the detergent is removed from the solution by adsorption to polystyrene beads, the proteins of the extract remain soluble. However, when the solution is frozen and thawed, nearly all of the proteins reassociate to form membrane vesicles, recruiting lipids from the medium. The membranes equilibrate as a narrow band (d = 1.167 g/cm3) upon sucrose density gradient centrifugation. The lipid composition of reconstituted membranes (1:2 cholesterol:phospholipids) closely resembles that of the original extract, as does the protein content (45%). Ciliary calmodulin is the major extract protein that does not associate with the reconstituted membrane, even in the presence of 1 mM calcium ions, suggesting that it is a soluble matrix component. The major protein of reconstituted vesicles is membrane tubulin, shown previously to differ hydrophobically from axonemal tubulin. The tubulin is tightly associated with the membrane since extraction with 1 mM iodide or thiocyanate leaves a vesicle fraction whose protein composition and bouyant density are unchanged. Subjecting the detergent-free membrane extract to a freeze-thaw cycle in the presence of elasmobranch brain tubulin or forming membranes by warming the extract in the presence of polymerization-competent tubulin yields a membrane fraction with little incorporated brain tubulin. This suggests that ciliary membrane tubulin specifically associates with lipids, whereas brain tubulin preferentially forms microtubules.  相似文献   

15.
L-Leucine is cotransported with H+ in the plasma membrane of Chang liver cells (Mitsumoto, Y. et al. (1986) J. Biol. Chem. 261, 4549). The leucine transport system was solubilized from the plasma membrane of the cells with ocytl glucoside and reconstituted in proteoliposomes prepared by a rapid dilution of a mixture of the solubilized proteins, octyl glucoside and liposomes. The proteoliposomes exhibited H(+)-gradient and electrical potential-stimulated leucine uptake. The H(+)-gradient-stimulated leucine uptake could be completely inhibited by carbonyl cyanide p-trifluoro-methoxyphenylhydrazone (FCCP) and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH). The stimulatory effect of H+ gradient on leucine uptake was shown to be mainly due to decrease of the Km, but not to change of the Vmax, of the transport kinetics. These results suggest that the leucine-H+ cotransporter is solubilized and reconstituted into proteoliposomes.  相似文献   

16.
Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake.  相似文献   

17.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   

18.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

19.
Adenosine 3'-phosphate 5'-phosphosulfate (PAPS), the "active" sulfate donor for sulfated macromolecules, is synthesized in the cytosolic fraction of rat brains. This molecule is then translocated into the lumen of the Golgi apparatus so that it is available to the sulfotransferase enzymes. The protein responsible for the PAPS translocating activity has been solubilized from vesicles enriched in enzyme markers for the Golgi apparatus and reconstituted into liposomes. In reconstituted liposomes translocating activity has a pH optimum of 7.0 and activity was increased 3-fold by divalent cations, although EDTA produced no inhibition. The affinity of the reconstituted translocator for PAPS showed a Km of 1.2 mM with a Vmax of 14 pmol of PAPS translocated/min/mg of protein. Specificity of the translocator activity was tested with a number of nucleotide analogues and only 3',5'-adenosine diphosphate was a competitive inhibitor. Inhibitors of the mitochondrial ADP/ATP transporter and the red cell anion channel blocked transport of PAPS only at very high concentrations.  相似文献   

20.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号