首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is universally abundant and no life can exist without it. However, iron levels should be maintained within a narrow range. Iron deficiency causes anaemia, whereas excessive iron increases cancer risk, presumably by free radical generation. Several pathological conditions such as genetic haemochromatosis, chronic viral hepatitis B and C, conditions related to asbestos fibre exposure and ovarian endometriosis have been recognized as iron overload-associated conditions that also increase human cancer risks. Iron's carcinogenicity has been documented in animal experiments. Surprisingly, these studies have revealed that the homozygous deletion of CDKN2A/2B is a major hallmark of iron-induced carcinogenesis. Recently, the hormonal regulation of iron metabolism has been elucidated. A commonly hypothesized mechanism may be the lack of any iron disposal pathway other than for bleeding and a mechanism of iron re-uptake as catechol chelate has been discovered. Iron overload in neurons via the ferroportin block may play a role in Alzheimer's disease. Furthermore, a recent epidemiological study reported that iron reduction by phlebotomy was associated with decreased cancer risks in a general population. Given that the required amounts of iron decrease during ageing, the fine control of body iron stores would be a wise strategy for chemoprevention of several diseases.  相似文献   

2.
Abstract

Reactive oxygen species (ROS) have been shown to be associated with a wide variety of pathological phenomena such as carcinogenesis, inflammation, radiation and reperfusion injury. Iron, the most abundant transition metal ion in our body, may work as a catalyst for the generation of ROS in pathological conditions. In the past few years, there have been great advances in the understanding of iron metabolism. These include the discoveries of iron transporters and the gene responsible for hereditary hemochromatosis. Iron overload has been shown to be associated with carcinogenesis. We recently identified the major target genes (p16INK4A and p15INK4B tumor suppressor genes, which encode cyclin-dependent kinase inhibitors) in a ferric nitrilotriacetate-induced rat renal carcinogenesis model, in which the Fenton reaction is induced in the renal proximal tubules. Allelic loss of the p16 gene occurs early in carcinogenesis and specifically at the p16 loci as compared with other tumor suppressor genes. This led to the novel concept of 'genomic sites vulnerable to the Fenton reaction'. Here, recent new findings on iron metabolism are reviewed and the concept of the vulnerable sites explored. More effort to link iron metabolism with human carcinogenesis is anticipated.  相似文献   

3.
BackgroundIron is an essential element for growth and metabolic activities of all living organisms but remains in its oxyhydroxide ferric ion form in the surrounding. Unavailability of iron in soluble ferrous form led to development of specific pathways and machinery in different organisms to make it available for use and maintain its homeostasis. Iron homeostasis is essential as under different circumstances iron in excess as well as deprivation leads to different pathological conditions in human.ObjectiveThis review highlights the current findings related to iron excess as well as deprivation with regards to cellular proliferation.ConclusionsIron excess is extensively associated with different types of cancers viz. colorectal cancer, breast cancer etc. by producing an oxidative stressed condition and alteration of immune system. Ironically its deprivation also results in anaemic conditions and leads to cell cycle arrest at different phases with mechanism yet to be explored. Iron deprivation arrests cell cycle at G1/S and in some cases at G2/M checkpoints resulting in growth arrest. However, in some cases iron overload arrests cell cycle at G1 phase by blocking certain signalling pathways. Certain natural and synthetic iron chelators are being explored from few decades to combat diseases caused by alteration in iron homeostasis.  相似文献   

4.
5.
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.  相似文献   

6.
7.
8.

Background

Iron is necessary for life, but excess iron can be toxic to tissues. Iron is thought to damage tissues primarily by generating oxygen free radicals through the Fenton reaction.

Methods

We present an overview of the evidence supporting iron's potential contribution to a broad range of eye disease using an anatomical approach.

Results

Iron can be visualized in the cornea as iron lines in the normal aging cornea as well as in diseases like keratoconus and pterygium. In the lens, we present the evidence for the role of oxidative damage in cataractogenesis. Also, we review the evidence that iron may play a role in the pathogenesis of the retinal disease age-related macular degeneration. Although currently there is no direct link between excess iron and development of optic neuropathies, ferrous iron's ability to form highly reactive oxygen species may play a role in optic nerve pathology. Lastly, we discuss recent advances in prevention and therapeutics for eye disease with antioxidants and iron chelators.

General significance

Iron homeostasis is important for ocular health.  相似文献   

9.
As a result of the advancing global technologies and civilisation, there has been a progressive depletion of high-grade mineral deposits. Consequently, it has become increasingly important to process lower-grade ores. Phosphorous (P) and particular potassium (K) contained in the iron ore concentrates of the Sishen Iron Ore Mine have a detrimental effect on the steel making process, whereby these alkali’s cause cracks to form in the refractory lining of blast furnaces. It is initially essential to determine which microbes are indigenously present at the Sishen Iron Ore Mine before strategising how best to employ them to industrial advantage. Therefore, the objective of this study was to determine which microorganisms are indigenous to the iron ore and soil of the Sishen Iron Ore Mine. The bacterial 16S PCR and fungal ITS PCR revealed several bacterial and fungal species present in the mine environment. The bacterial isolates were found to be closely related to Herbaspirillum species, as well as Acidithiobacillus ferrooxidans, while the fungal isolates were closely related to Aureobasidium pullulans, Phaeosphaeria nodorum, Aspergillus fumigatus, and Candida parapsilosis. Isolating A. fumigatus from the iron ore/soil of the mine may indicate that A. niger, the most common fungi used for the production of citric acid, can adapt to the stringent mine environment. This would allow the application of A. niger for the production of citric acid, which may be used for the chemical leaching of the P and K from the iron ore concentrate of the Sishen Iron Ore Mine.  相似文献   

10.
BackgroundIron is essential for many types of biological processes. However, excessive iron can be cytotoxic and can lead to many diseases. Since ferroptosis, which is an iron-dependent regulated form of necrosis, was recently discovered, iron and iron-catalysed oxidative stress have attracted much interest because of their sophisticated mechanism of cellular signalling leading to cell death and associated with various diseases.Scope of reviewIn this review, we first focus on how iron catalyses reactive oxygen species (ROS). Next, we discuss the roles of iron in cell death and senescence and, in particular, the downstream signalling pathways of ROS. Finally, we discuss the potential regulation mechanism of iron as a therapeutic target for various iron-related diseases.Major conclusionsBoth labile iron released from organelles upon various stresses and iron incorporated in enzymes produce ROS, including lipid ROS. ROS produced by iron activates various signalling pathways, including mitogen-activated protein kinase (MAPK) signalling pathways such as the apoptosis signal-regulating kinase 1 (ASK1)-p38/JNK pathway. These ROS-activated signalling pathways regulate senescence or cell death and are linked to cancer, ischaemia-reperfusion injury during transplantation and ageing-related neurodegenerative diseases.General significanceIron overload damages cells and causes harmful effects on the body through oxidative stress. Thus, understanding the spatiotemporal availability of iron and the role of iron in generating ROS will provide clues for the suppression of ROS and cytotoxic redox-active iron. Moreover, elucidating the molecular mechanisms and signalling pathways of iron-dependent cytotoxicity will enable us to find novel therapeutic targets for various diseases.  相似文献   

11.
Summary

Iron overload is known to occur in West European and American populations due to the consumption of an iron-rich diet. There are also genetic disorders which lead to body iron overload. It has been shown that iron overload predisposes humans to an increased risk of cancer. In experimental animals, iron overload is known to enhance intestinal, colon, hepatic, pulmonary and mammary carcinogenesis. However, the mechanism by which iron overload enhances chemically-induced carcinogenesis is not known. In this study, we show that iron overload acts as a mild tumor promoter in mouse skin. Female albino swiss mice were given 1 mg iron/mouse parenterally for 2 weeks to induce iron overload. These animals showed a three-fold increase in cutaneous iron concentration as compared to normal mice. Tumors were initiated by topically applying 7,12-dimethylbenz(a)anthracene (DMBA). Appearance of the first tumor (latency period), percent tumor incidence and number of tumors/mouse were recorded. When compared to the control group, iron overload mice showed an increased incidence of tumors, from 25%-55% by week 20, and tumors appeared 4 weeks earlier. The number of tumors per mouse was four-fold higher in the iron overload group. The induction of cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation in cutaneous DNA were higher in iron overload groups as compared to normal control animals. Similar to other oxidant tumor promoters, iron overload enhanced cutaneous lipid peroxidation and xanthine oxidase activity and decreased catalase activity. Our results indicate that iron overload exerts a mild tumor promoting activity in mouse skin. Our data also show that oxidative stress generated by iron overload plays an important role in the augmentation of cutaneous tumorigenesis. These data may also have implications for the enhanced risk of cancer-induction following UVB exposure of human populations with iron overload.  相似文献   

12.
Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.  相似文献   

13.
BackgroundIn neurodegenerative diseases such as Alzheimer's and Parkinson's, excessive irons as well as lactoferrin (Lf), but not transferrin (Tf), have been found in and around the affected regions of the brain. These evidences suggest that lactoferrin plays a critical role during neurodegenerative diseases, although Lf-mediated iron transport across blood-brain barrier (BBB) is negligible compared to that of transferrin in normal condition. However, the kinetics of lactoferrins and lactoferrin-mediated iron transport are still unknown.MethodTo determine the kinetic rate constants of lactoferrin-mediated iron transport through BBB, a mass-action based ordinary differential equation model has been presented. A Bayesian framework is developed to estimate the kinetic rate parameters from posterior probability density functions. The iron transport across BBB is studied by considering both Lf- and Tf-mediated pathways for both normal and pathologic conditions.ResultsUsing the point estimates of kinetic parameters, our model can effectively reproduce the experimental data of iron transport through BBB endothelial cells. The robustness of the model and parameter estimation process are further verified by perturbation of kinetic parameters. Our results show that surge in high-affinity receptor density increases lactoferrin as well as iron in the brain.ConclusionsDue to the lack of a feedback loop such as iron regulatory proteins (IRPs) for lactoferrin, iron can transport to the brain continuously, which might increase brain iron to pathological levels and can contribute to neurodegeneration.General significanceThis study provides an improved understanding of presence of lactoferrin and iron in the brain during neurodegenerative diseases.  相似文献   

14.
Iron and copper are transition metals that can be toxic to cells due to their abilities to react with peroxide to generate hydroxyl radical. Ferritins and metallothioneins are known to sequester intracellular iron and copper respectively. The Lyme disease pathogen Borrelia burgdorferi does not require iron, but its genome encodes a ferritin‐like Dps (D NA‐binding p rotein from s tarved bacteria) molecule, which has been shown to be important for the spirochaete's persistence in the tick and subsequent transmission to a new host. Here, we show that the c arboxyl‐terminal c ysteine‐r ich (CCR) domain of this protein functions as a copper‐binding metallothionein. This novel fusion between Dps and metallothionein is unique to and conserved in all Borrelia species. We term this molecule BicA for B orrelia i ron‐ and c opper‐binding protein A . An isogenic mutant lacking BicA had significantly reduced levels of iron and copper and was more sensitive to iron and copper toxicity than its parental strain. Supplementation of the medium with iron or copper rendered the spirochaete more susceptible to peroxide killing. These data suggest that an important function of BicA is to detoxify excess iron and copper the spirochaete may encounter during its natural life cycle through a tick vector and a vertebrate host.  相似文献   

15.
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.  相似文献   

16.
Iron(II) dichloride complexes bearing 2-(methyl-substituted 1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (Fe1Fe6) or 2-(chloro-substituted 1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (Fe7Fe12) were synthesized and characterized by FT-IR and elemental analysis. Single crystal X-ray crystallographic analyses revealed that complexes Fe2 and Fe3 possessed a distorted square-pyramidal geometry at iron. Upon activation with either MAO or MMAO, all iron pro-catalysts showed good activities toward ethylene oligomerization with high selectivity for α-olefins and high K values. The influence of the reaction conditions and the nature of the ligands on the catalytic performance of these iron complexes were investigated.  相似文献   

17.
Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4‐type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild‐type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini‐ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4‐type ATPases previously implicated in bacterial pathogenesis.  相似文献   

18.
BackgroundFerritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed.MethodsThe iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522 nm where the Fe(II)–bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton.Results and conclusionsUnder our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed.General significanceCaution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.  相似文献   

19.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号