共查询到20条相似文献,搜索用时 15 毫秒
1.
DeArmond SJ 《Neurochemical research》2004,29(11):1979-1998
The purpose of my chapter in this issue of Neuroscience Reviews dedicated to Dr. Lawrence Eng is to summarize my contributions to understanding the mechanisms of neurodegeneration in prion diseases. I explain that I was able to advance the field of prion disease neuropathology largely because of the foundation of neurochemistry and immunohistochemistry that I learned while working 5 years in Dr. Engs laboratory. In my review, I relate how my Neuropathology Research Laboratory began as a collaboration with Dr. Stanley Prusiner 20 years ago that led from immunohistochemical staining of amyloid plaques in rodent and human brains using prion protein-specific antibodies to molecular evidence that the abnormal prion protein, PrPSc, is the cause of the clinically relevant neuropathological changes in animal and human prion diseases.Special issue dedicated to Dr. Lawrence F. Eng. 相似文献
2.
3.
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC) into scrapie prion protein (PrPSc) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site‐selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed. 相似文献
4.
Christian Gerum 《Journal of molecular biology》2010,401(1):7-673
The prion protein can exist both in a normal cellular isoform and in a pathogenic conformational isoform. The latter is responsible for the development of different neurodegenerative diseases, for example Creutzfeldt-Jakob disease or fatal familial insomnia. To convert the native benign state of the protein into a highly ordered fibrillar aggregate, large-scale rearrangements of the tertiary structure are necessary during the conversion process and intermediates that are at least partially unfolded are present during fibril formation. In addition to the sporadic conversion into the pathogenic isoform, more than 20 familial diseases are known that are caused by single point mutations increasing the probability of aggregation and neurodegeneration. Here, we demonstrate that the chemically denatured states of the mouse and human prion proteins have very similar structural and dynamic characteristics. Initial studies on the single point mutants E196K, F198S, V203I and R208H of the oxidized mouse construct, which are related to human prion diseases, reveal significant differences in the rate of aggregation. Aggregation for mutants V203I and R208H is slower than it is for the wild type, and the constructs E196K and F198S show accelerated aggregation. These differences in aggregation behaviour are not correlated with the thermal stability of the mutants, indicating different mechanisms promoting the conformational conversion process. 相似文献
5.
Xiaowen Yang ;Yan Zhang ;Lihua Zhang ;Tianlin He ;Jie Zhang ;Chaoyang Li 《Acta biochimica et biophysica Sinica》2014,(6):431-440
The normal cellular prion protein, PrPc is a highly con served and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrPc remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrPc. In this paper, we reviewed the potential roles that PrPc plays in cell physiology and focused on its contribution to tumorigenesis. 相似文献
6.
The molecular diagnosis of prion diseases almost always involves the use of a protease to distinguish PrPC from PrPSc and invariably the protease of choice is proteinase K. Here, we have applied the protease thermolysin to the diagnosis of
animal prion diseases. This thermostable protease cleaves at the hydrophobic residues Leu, Ile, Phe, Val, Ala and Met, residues
that are absent from the protease accessible aminoterminal region of PrPSc. Therefore, although thermolysin readily digests PrPc into small protein fragments, full-length PrPSc is resistant to such proteolysis. This contrasts with proteinase K digestion where an aminoterminally truncated PrPSc species is produced, PrP27–30. Thermolysin was used in the diagnosis of ovine scrapie and bovine spongiform encephalopathy and produced comparable assay
sensitivity to assays using proteinase K digestion. Furthermore, we demonstrated the concentration of thermolysin-resistant
PrPSc using immobilized metal-affinity chromatography. The use of thermolysin to reveal a full-length PrPSc has application for the development of novel immunodiagnostics by exploiting the wide range of commercially available immunoreagents
and metal affinity matrices that bind the amino-terminal region of PrP. In addition, thermolysin provides a complementary
tool to proteinase K to allow the study of the contribution of the amino-terminal domain of PrPSc to disease pathogenesis. 相似文献
7.
Moore RC Boulton K Bishop SC 《Animal : an international journal of animal bioscience》2009,3(3):336-346
The National Scrapie Plan (NSP) was launched in Great Britain in 2001, with the aim of eventually eradicating scrapie, a small ruminant transmissible spongiform encephalopathy, from the national sheep flock. Specifically, a selective breeding programme, the Ram Genotyping Scheme, was devised enabling pedigree ram breeders to reduce the number of scrapie-susceptible genotypes from their flocks. The effect of large-scale manipulation of PrP genotypes on commercially important traits within the sheep industry is, however, unknown. We have therefore examined production traits in a total of 43 968 lambs from 32 pedigree breeders across three British hill breeds, comprising 8163 North Country Cheviot (Hill), 21 366 Scottish Blackface and 14 439 Welsh Mountain lambs. Traits examined included: weights at birth, 8 and 20 weeks; ultrasonic fat and muscle depth, and average daily weight gain from 8 to 20 weeks. Linear mixed models were fitted for each trait, including animal (direct) genetic effects and up to three maternal effects. Potential associations with the PrP gene were assessed by fitting either PrP genotype or number of copies of individual alleles as fixed effects. A number of breed-specific significant associations between production traits and the PrP gene were found, but no consistent significant effects were detected across the three breeds. Breed-specific effects were as follows: (i) 0.37 kg higher birth weights (BWTs) in AHQ homozygous North Country Cheviot (Hill) lambs (P < 0.01); (ii) 0.16 kg higher BWTs in ARR homozygous Scottish Blackface lambs (P < 0.05); (iii) 0.5 kg higher 8-week weights in VRQ heterozygous Scottish Blackface lambs (P < 0.01); (iv) a 0.72 kg decrease in scan weight associated with homozygous ARR Welsh Mountain lambs (P < 0.01); (v) 0.51 mm higher ultrasonic muscle depths in AHQ homozygous Welsh Mountain lambs (P < 0.01); (vi) 0.48 mm lower ultrasonic muscle depths in Welsh Mountain lambs carrying one or more copies of the ARR allele (P < 0.05) and (vii) 0.2 mm higher ultrasonic fat depths in heterozygous VRQ Welsh Mountain lambs (P < 0.05). The use of a Bonferroni correction to define appropriate significance thresholds across the three datasets, which account for the large number of independent comparisons made, resulted in breed-specific comparisons, with P < 0.01 becoming significant at P0.05, and the remaining breed-specific comparisons no longer being significant. The absence of a common effect across the three breeds suggests that any true association found may be due to breed-specific alleles of neighbouring genes in linkage disequilibrium with the PrP locus. 相似文献
8.
Nazor KE Kuhn F Seward T Green M Zwald D Pürro M Schmid J Biffiger K Power AM Oesch B Raeber AJ Telling GC 《The EMBO journal》2005,24(13):2472-2480
The absence of infectivity-associated, protease-resistant prion protein (PrPSc) in the brains of spontaneously sick transgenic (Tg) mice overexpressing PrP linked to Gerstmann–Sträussler Scheinker syndrome, and the failure of gene-targeted mice expressing such PrP to develop disease spontaneously, challenged the concept that mutant PrP expression led to spontaneous prion production. Here, we demonstrate that disease in overexpressor Tg mice is associated with accumulation of protease-sensitive aggregates of mutant PrP that can be immunoprecipitated by the PrPSc-specific monoclonal antibody designated 15B3. Whereas Tg mice expressing multiple transgenes exhibited accelerated disease when inoculated with disease-associated mutant PrP, Tg mice expressing mutant PrP at low levels failed to develop disease either spontaneously or following inoculation. These studies indicate that inoculated mutant PrP from diseased mice promotes the aggregation and accumulation of pre-existing pathological forms of mutant PrP produced as a result of transgene overexpression. Thus, while pathological mutant PrP possesses a subset of PrPSc characteristics, we now show that the attribute of prion transmission suggested by previous studies is more accurately characterized as disease acceleration. 相似文献
9.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed. 相似文献
10.
Barbara ChristenSimone Hornemann Fred F. DambergerKurt Wüthrich 《Journal of molecular biology》2012,423(4):496-502
The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrPC) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrPC-fold, and it contains a 310-helical β2-α2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20 °C. With this “rigid‐loop PrPC” behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I β-turn β2-α2 loop structure. When compared to other rigid‐loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8 °C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrPC conformation and their implications for the PrPC physiological function. 相似文献
11.
疯牛病(mad cow disease),即牛传染性海绵状脑病(bovine transmissible spongiform encephalopathy,BSE)的俗称,是一种慢性消耗性、致死性、中枢神经系统退行性疾病。疯牛病被认为与朊毒体(Prion)有关,朊毒体是由正常朊蛋白(Prion protein,或者PrPC)发生构象改变后形成的异常蛋白(PrPSc)。疯牛病的发生引起了世界各国政府和科学界的高度重视,PrP的起源及其功能研究已成为研究热点。鱼类PrP相关蛋白的研究正在展开中,由于鱼类PrP相关蛋白与朊蛋白的结构相似,鱼类感染TSE类似病存在理论上的风险。本文全面地综述了疯牛病的概况、朊毒体的特性、朊毒体与哺乳动物朊蛋白、鱼类PrP相关蛋白(PrP1、PrP2和PrP3)及鱼类其他PrP相关蛋白的研究情况,为国内水生动物PrP相关蛋白研究提供参考。 相似文献
12.
Horse Prion Protein NMR Structure and Comparisons with Related Variants of the Mouse Prion Protein 总被引:2,自引:0,他引:2
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses. 相似文献
13.
14.
Moore RC Boulton K Bishop SC 《Animal : an international journal of animal bioscience》2009,3(12):1688-1695
The Ram Genotyping Scheme was launched in Great Britain in 2001 as part of the National Scrapie Plan and was devised to reduce and eventually eradicate classical scrapie susceptible genotypes from the national pedigree flock. Anecdotal claims from breeders suggest that sheep with more resistant PrP genotypes may have inferior phenotypes. In this study, we test this possibility for lamb production traits in three breeds of lowland sheep: Charollais (22 752 lambs), Poll Dorset (22 589 lambs) and Texel (23 492 lambs). Data were received from 50 breeders and comprised weights at birth, 8 weeks and scanning (from which average daily weight gain was derived), and ultrasonic muscle and fat depths. Animal (direct) genetic effects and up to three maternal effects were fitted in linear mixed models for each trait. Fitting either PrP genotype or number of copies of individual alleles carried as fixed effects allowed potential associations with the PrP gene to be assessed. There were no significant associations seen in the Poll Dorset breed; however, significant associations were found with the number of allele copies carried in the other two breeds included in this study. Charollais lambs carrying one copy of the VRQ allele had significantly (P < 0.01) greater ultrasonic muscle depth (0.58 mm) and fat depth (0.2 mm) than non-carriers. In the Texel breed, lambs with one ARR allele were significantly heavier than those with two or zero ARR alleles; heterozygous ARR lambs were 0.07 kg heavier at birth (P < 0.05), 0.42 kg heavier at 8 weeks (P < 0.01) and 0.17 kg heavier at scan weight (P < 0.01), than non-carriers. After Bonferroni corrections to adjust significance thresholds to account for the large number of independent comparisons made, all significant results remained so at P < 0.05 or greater, except for the ARR allele effect on birth weight in the Texel breed, which was no longer significant. These results compare favourably with others from studies on many continental breeds of sheep, published in recent years, and add credence to the conclusion that selection on PrP genotype is unlikely to have any noticeable impact on the measured growth and carcass traits in sheep. 相似文献
15.
Goldmann W Baylis M Chihota C Stevenson E Hunter N 《Journal of applied microbiology》2005,99(6):1294-1302
AIMS: To analyse the frequencies of prion (PrP) gene haplotypes in UK sheep flocks and evaluate their relevance to transmissible spongiform encephalopathies (TSEs) and TSE resistance breeding programmes in sheep. METHODS AND RESULTS: Genomic DNA isolated from sheep blood was PCR amplified for the coding region of the PrP gene and then sequenced. This study has analysed the sequence of PrP between codons 110 and 245 in 6287 ARQ haplotypes revealing a total of eight variant sequences, which represent a higher than expected 41% of all ARQ haplotypes. The additional PrP gene dimorphisms were M112T, L141F, M137T, H143R, H151C, P168L, Q175E and P241S. CONCLUSION: The results do not suggest a correlation between the occurrence of a specific ARQ haplotype and the scrapie disease status of a flock. The ARQ haplotype variability appears to be different in the UK sheep flocks compared with sheep flocks from outside the UK. SIGNIFICANCE AND IMPACT OF THE STUDY: Additional PrP dimorphisms may impact on the methodologies used for standard PrP genotyping in sheep breeding programmes. Some of these polymorphisms were found with significant frequencies in the UK sheep flocks and should therefore be considered in breeding programmes. 相似文献
16.
17.
Jiri G. Safar 《朊病毒》2012,6(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. 相似文献
18.
《朊病毒》2013,7(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. 相似文献
19.
Esmaeil Behmard Parviz Abdolmaleki Ebrahim Barzegari Asadabadi Samad Jahandideh 《Journal of biomolecular structure & dynamics》2013,31(2):379-389
Abstract Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species. 相似文献
20.
Ironside JW 《Comptes rendus biologies》2002,325(1):27-31
The neuropathological features human prion diseases comprise spongiform change, neuronal loss, astrocytic and microglial proliferation and the accumulation of the abnormal isoform of prion protein (PrPRES) in the central nervous system. Variant Creutzfeldt-Jakob disease (CJD) is a novel human prion disease which appears to result from infection by the bovine spongiform encephalopathy (BSE) agent. The neuropathology of variant CJD shows morphological and immunocytochemical characteristics distinct from all other types of human prion disease, and is characterised by abundant florid and cluster plaques in the cerebrum and cerebellum, and widespread accumulation of PrPRES on immunocytochemistry. Spongiform change is most marked in the caudate nucleus and putamen, and the thalamus exhibits severe neuronal loss and gliosis, which is most marked in the posterior nuclei and correlates with the areas of high signal seen in the posterior thalamus on MRI examination of the brain. Western blot analysis of PrPRES on frozen brain tissue in variant CJD tissue shows a uniform isotype, with a glycoform ratio distinct from sporadic CJD. PrPRES accumulation is widespread in lymphoid tissues in vCJD. All cases of variant CJD are methionine homozygotes at codon 129 of the PrP gene. Histological and biochemical techniques will be required to identify cases of 'human BSE' in individuals who are MV or VV at codon 129 of the PrP gene. Continued surveillance is required to investigate this possibility in the UK and other countries where BSE has been reported. 相似文献