首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brioukhanov  A. L.  Thauer  R.K.  Netrusov  A.I. 《Microbiology》2002,71(3):281-285
Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source.  相似文献   

2.
3.
《Free radical research》2013,47(3):185-188
6-ketocholestanol. a naturally occurring oxygenated sterol, when incubated with human neutrophils (PMN), can inhibit superoxide and hydrogen peroxide generation in a dose-dependent fashion. This is accompanied by inhibition of stimulated PMN aggregation without alteration in cellular viability. This inhibitory effect is not affected by washing of the cells, and cannot be blocked by the addition of free cholesterol to the medium. These data are consistent with prior observations which showed an inhibitory effect on PMN chemotaxis by certain oxygenated sterol compounds. and support the hypothesis that certain oxygenated sterols can affect a variety of human PMN functions by a mechanism that may involve perturbation of the plasma membrane.  相似文献   

4.
《Free radical research》2013,47(6):349-353
Chelates can inhibit the iron- and copper-catalyzed autoxidation of ascorbate at pH 7.0. Diethylenetri-aminepentaacetic acid (DTPA or DETAPAC) and Desferal (deferoximane mesylate) slow the iron-catalyzed oxidation of ascorbate as effectively as reducing the trace levels of contaminating iron in buffers with Chelex resin. DETAPAC, EDTA and HEDTA (N-(2-hydroxyethyl)-ethylenediaminetriacetic acid) are effective at slowing the copper-catalyzed autoxidation of ascorbate while Desferal is ineffective. The ability to inhibit ascorbate autoxidation appears to parallel the rate of the reaction of superoxide with the iron chelate.  相似文献   

5.
Chelates can inhibit the iron- and copper-catalyzed autoxidation of ascorbate at pH 7.0. Diethylenetri-aminepentaacetic acid (DTPA or DETAPAC) and Desferal (deferoximane mesylate) slow the iron-catalyzed oxidation of ascorbate as effectively as reducing the trace levels of contaminating iron in buffers with Chelex resin. DETAPAC, EDTA and HEDTA (N-(2-hydroxyethyl)-ethylenediaminetriacetic acid) are effective at slowing the copper-catalyzed autoxidation of ascorbate while Desferal is ineffective. The ability to inhibit ascorbate autoxidation appears to parallel the rate of the reaction of superoxide with the iron chelate.  相似文献   

6.
This review considers the distribution of the main enzymes of antioxidative defense, superoxide dismutase (SOD) and catalase, in various groups of strictly anaerobic microorganisms: bacteria of the genus Clostridium, Bacteroides, sulfate-reducing and acetogenic bacteria, methanogenic archaea, etc. Molecular and biochemical properties of purified Fe-containing SODs, cambialistic SODs, and heme catalases are presented. The physiological role and origin of the enzymes of antioxidative defense in strict anaerobes are discussed. Physiological responses (induction of SOD and catalase) to factors provoking oxidative stress in the cells of strict anaerobes able to maintain viability under aerobic conditions are also considered.  相似文献   

7.
用PAGE活性染色法分析了D.rndiodurans过氧化氢酶(Cat)和超氧化物歧化酶(SOD)._2种同种异型D.radiodurans(RI和Sark)的Cat在电泳带型上存在差异,两者Kat均可分为A、B和C3条带,但各带所占比例明显不同。SOD的分析结果表明,D.radioduransSOD以Fe2 和Mn2 离子的嵌合体形式存在,其中Fe-SOD成分占90%以上。PAGE活性染色法可检出Cat和SOD的最低菌体总蛋白量分别为1.2和2.0μg。  相似文献   

8.
The ability of various iron(II)-complexes of biological, clinical and chemical interest to reduce molecular oxygen to reactive oxy-radicals has been investigated using complementary oxygen-uptake studies and e.s.r. techniques. It is demonstrated that although the rate of oxygen reduction by a given iron complex is directly related to its redox potential [thus complexes with low values of E0 for the Fe(III)/Fe(II) couple are the most effective reductants of oxygen], the overall ability of an iron(II) complex to induce oxidative biomolecular damage is also determined by its ability to undergo redox-cycling reactions with reducing radicals formed following the reaction of hydroxyl radicals with organic substrates present in the system (e.g. metal-ion chelators and organic buffers). Evidence is presented to suggest that the “Good” buffer MOPS forms a reducing radical following attack by -OH, and hence encourages the autoxidation of iron with the generation of oxy-radicals (as also observed for some of the chelates studied); this may have important implications for the use of such buffers in free-radical studies.  相似文献   

9.
《Free radical research》2013,47(3-6):367-374
The hypoxanthine — xanthine oxidase system generates an extracellular flux of superoxide anion radical (O2?) and hydrogen peroxide (H2O2). Catalase but not superoxide dismutase (SOD) protects V79 cells exposed to the hypoxanthine — xanthine oxidase system, showing that H2O2 is the major reactive oxygen species involved in the cytotoxicity of such a system. In contrast to SOD, the lipophilic SOD like compound CuII (diisopropylsalicylate)2 (CuDIPS) exhibits some protection at non cytotoxic concentration. It is also found that methanol partially protects cells exposed to the hypoxanthine-xanthine oxidase system. It appears that in our experimental conditions (temperature, ionic strength and pH) the protective effect afforded by methanol and CuDIPS is due to the inhibition of the xanthine oxidase activity.  相似文献   

10.
Activities of the anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were studied in rat tissues to determine the ability of detergents both to solubilize the enzymes and also to stabilize enzyme activity. Rat brain, heart and liver were homogenized in 0.1M KCl, 0.1% sodium dodecyl sulfate, 0.1% lubrol, or 0.1% cetyl-trimethylammonium bromide. In general lubrol was more effective than the other solutions in solubilizing GPx and catalase. Lubrol and 0.1M KCl were equally effective in solubilizing SOD. The highest enzyme activities were (1) SOD: 2484 ng/mg (brain), 2501 ng/mg (heart), and 5586 ng/mg (liver); (2) GPx: 224 mU/mg (brain), 1870 mU/mg (heart), and 7332 mU/mg (liver); (3) catalase: 2.8 mU/mg (brain), 10.6 mU/mg (heart), and 309 mU/mg (liver). While cetyl trimethylammonium bromide is marginally better than sodium dodecyl sulfate in solubilizing active enzyme, neither ionic detergent has any advantage over lubrol or 0.1M KCl. For catalase and GPx, enzyme activity loss with time is biphasic. After initial, rapid activity loss (1–5 days for GPx and 7–10 days for catalase) the differences noted among the homogenizing solutions disappear and very little if any activity loss is noted over the next 2–3 weeks. For catalase and GPx, only baseline enzyme activity from t = 0 – 3 weeks is found in the most chaotropic solution, 0.1% sodium dodecyl sulfate while biphasic activity loss is most pronounced in 0.1% lubrol. These results may indicate active GPx and catalase species stabilized by a lipid-like environment. Correlatingin vitro catalase or GPx measurements within vivo anti-oxidative protection may underestimate tissue defences.  相似文献   

11.
The effect of hydrogen peroxide on the activities of catalase and superoxide dismutase (SOD) in S. cerevisiae has been studied under different experimental conditions: various H2O2 concentrations, time exposures, yeast cell densities and media for stress induction. The yeast treatment with 0.25–0.50 mM H2O2 led to an increase in catalase activity by 2–3-fold. At the same time, hydrogen peroxide caused an elevation by 1.6-fold or no increase in SOD activity dependently on conditions used. This effect was cancelled by cycloheximide, an inhibitor of protein synthesis in eukaryotes. Weak elevation of catalase and SOD activities in cells treated with 0.25–0.50 mM H2O2 found in this study does not correspond to high level of synthesis of the respective enzyme molecules observed earlier by others. It is well known that exposure of microorganisms to low sublethal concentrations of hydrogen peroxide leads to the acquisition of cellular resistance to a subsequent lethal oxidative stress. Hence, it makes possible to suggest that S. cerevisiae cells treated with low sublethal doses of hydrogen peroxide accumulate non-active stress-protectant molecules of catalase and SOD to survive further lethal oxidant concentrations.  相似文献   

12.
Abstract The planktonic cyanobacterium Microcystis aeruginosa is particularly sensitive to photoinhibition by visible light, Photosystem II and ribulose 1,5-bisphosphate (RuBP) carboxylase activities being affected. Although the organism contains superoxide dismutase (SOD) and catalase, these protective enzymes are also photoinactivated during the illumination of whole cells by visible light.  相似文献   

13.
Catalase and superoxide dismutase (SOD) activities were followed in leaves during ex vitro acclimatization and growth of micropropagated Spathiphyllum floribundum Schott Petite and Calathea louisae Gagnep Maui Queen. During acclimatization of both plants catalase activity increased, reaching a maximum 4 weeks after transplantation, while total superoxide dismutase activity increased with plant growth reaching a maximum in the 24th week. Variations in the pattern of catalase and SOD isoforms were observed; a second Mn-SOD band appeared in Spathiphyllum 12 weeks after transfer from in vitro, while in Calathea plants an additional Mn-SOD form was present from the second until the fourth week after transplantation. The observed changes reflect the plants' capacity to develop antioxidant mechanisms during acclimatization. These findings indicate that the adaptation of micropropagated plants to ex vitro conditions is more extended in time than generally accepted.  相似文献   

14.
    
Abstract Superoxide dismutase activity was detected in Aeromonas salmonicida under iron-replete and iron-limited culture conditions. Under iron-replete conditions an iron superoxide dismutase, molecular mass 50,400 Da, was identified based on inhibition by hydrogen peroxide but not by millimolar concentrations of cyanide. When the available iron in the culture medium was limited by addition of the non-assimilable iron chelator 2,2-dipyridyl, a manganese superoxide dismutase, molecular mass 45,600 Da, was identified, which was resistant to inhibition by either hydrogen peroxide or cyanide. The change in enzyme production would appear to be iron dependent, as addition of FeCl3 in excess to iron-limited broths resulted in only the iron superoxide dismutase being synthesised. Examination of the location of the superoxide dismutase enzymes revealed that the manganese superoxide dismutase expressed under iron limitation is located in the periplasm, while the iron superoxide dismutase has a cytoplasmic location. The periplasmic manganese superoxide dismutase was able to protect A. salmonicida against extracellular riboflavin-generated superoxide, with A. salmonicida grown under iron-limited conditions exhibiting a 32-fold increase in minimum bactericidal concentration of riboflavin compared to cells cultured under iron-replete conditions. Furthermore, in a time-course study of bactericidal activity of exogenously generated superoxide against A. salmonicida , bacteria grown under iron-replete conditions and expressing cytoplasmic iron superoxide dismutase were rapidly killed, whilst those grown under iron limitation expressing periplasmic manganese superoxide dismutase survived for the duration of the experiment.  相似文献   

15.
    
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

16.
Ischemia is associated with the pathological changes caused by the accumulation of reactive oxygen metabolites (ROM) in cerebrovascular accident (CVA). The aim of this study was to determine red cell copper/zinc-superoxide dismutase (Cu/Zn-SOD) and catalase activities and copper and zinc concentrations both in plasma and in red cells in CVA. Cu/Zn-SOD and catalase activities of 16 patients, with an average age of 64 yr, were measured spectrophotometrically; copper and zinc concentrations were determined by atomic absorption spectrophotometer. The results showed that Cu/Zn-SOD activity was increased markedly in patients compared to the young controls and reached a peak on the d 5 of the disease, whereas the catalase activity of the patients on d 3 and d 5 were in the normal range, but higher on d 10. The enzyme activities of the elderly group were generally increased compared to the young controls. Copper and zinc concentrations showed corresponding alterations. These findings suggested that the effects of oxidative stress in CVA might be reflected in red cell and plasma parameters. Presented at the III International Congress of Pathophysiology, Lahti, Finland, 28 June–3 July, 1998.  相似文献   

17.
Alloxan is a diabetogenic drug and is known to induce diabetes through generation of free radicals. The toxic oxygen species can be detoxified by antioxidant enzyme system and thus reduce the deleterious effect of lipid peroxidation. Erythrocytes exposed to alloxan induced lipid peroxidationin vivo as well asin vitro. Although alloxan treatment produced a deleterious effect on antioxidant enzymes, pretreatment with glutathione and selenium led to a recovery of the activities of superoxide dismutase and glutathione peroxidase. However, catalase activity increased on alloxan treatment. Alloxan reduced blood glucose level significantly within 60 min but thereafter a slow and steady rise was observed.  相似文献   

18.
Plants of Miscanthus sinensis (cv. Giganteus) were grown in hydroponics for three months in nutrient solution with 0, 2.2, 4.4 and 6.6 μM CdNO3. Growth parameters, catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities were analysed in leaves and roots collected after 1-and 3-month exposure. Dry biomass of all miscanthus organs was affected by Cd concentration both after 1-and 3-month exposure. No visible symptoms of Cd toxicity were observed in shoots and rhizomes of plants grown in presence of Cd. In contrast, roots became shorter and thicker and the whole root system more dense and compact already after one month of treatment with 6.6 μM Cd. The lower Cd concentration increased the enzymes activities after 3 months in leaves and only after 1-month in roots, while a decrease in activity was observed at higher Cd concentrations.  相似文献   

19.
Cadmium induced lipid peroxidation (LPO) and the activity of antioxidantenzymes after the administration of a single dose of CdCl 2 (0.4 mg kg body wt, ip) was studied in rat erythrocytes.Cd intoxication increased erythrocyte LPO along with a decrease insuperoxide dismutase (SOD) up to three days of Cd treatment. Thedecrease in erythrocyte catalase (CAT) activity was marked within9 h of Cd intoxication. After three days of Cd treatment, LPOdecreased towards normal, along with an increase in erythrocyteSOC and CAT activity. Blood glutathione (GSH) decreased significantlywithin 24 h of Cd treatment, followed by an increase towards normal.Erythrocyte glutathione S-transferase (GST) activity increased up to10 days of Cd intoxication, probably in an attempt to reduce Cd toxicity.Serum glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase(SALP) and serum bilirubin increased up to 10 days of Cd intoxication.Blood urea increased significantly up to three days, followed by a decreasetowards normal. The results show that Cd induced LPO was associated with adecrease in antioxidant enzymes and GSH in erythrocytes; as these antioxidantsincrease in erythrocytes with recovery from Cd intoxication, the Cd inducedLPO reversed towards normal. The increase in the SGPT, SALP and serum bilirubincorrelated with LPO. The results suggest that Cd intoxication induces oxidativestress and alters the antioxidant system, resulting in oxidative damage torat erythrocytes. © Rapid Science 1998  相似文献   

20.
Diazinon is one of the most widely used organophosphate insecticides (OPIs) in agriculture and public health programs. Reactive oxygen species (ROS) caused by OPIs may be involved in the toxicity of various pesticides. The aim of this study was to investigate how diazinon affects lipid peroxidation (LPO) and the antioxidant defense system in vivo and the possible ameliorating role of vitamins E and C. For this purpose, experiments were done to study the effects of DI on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in adult rat heart. Experimental groups were: (1) control group, (2) diazinon treated (DI) group, (3) DI+vitamins E and C-treated (DI+Vit) group. The levels of malondialdehyde (MDA) and the activities of SOD and CAT increased significantly in the DI group compared with the control group. The activity of SOD and the levels of MDA decreased significantly in the DI+Vit group compared with the DI group. The differences between the DI+Vit and control groups according to the MDA levels and the activities of both SOD and CAT were statistically significant. These results suggest that treating rats with a single dose of diazinon increases LPO and some antioxidant enzyme activities in the rat myocardium and, in addition, that single-dose treatment with a combination of vitamins E and C after the administration of diazinon can reduce LPO caused by diazinon, though this treatment was not sufficiently effective to reduce the values to those in control group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号