首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influences of buffers and iron chelators on the rate of autoxidation of Fe2+ were examined in the pH range 6.0–7.4. The catalysis by Fe2+ and Fe3+ of the autoxidation of dithiothreitol was also investigated. In buffers which are non- or poor chelators of iron, 0.25 mM Fe2+, and 0.3 mM dithiothreitol when present with iron, oxidize within minutes at pH 7.4 and 30°C. The stability of each increases as the pH is decreased and more than 90% of each remains after 1 h at pH 6.0. In the presence of buffers or oxy-ligands which preferentially and strongly chelate Fe3+ over Fe2+, Fe2+ autoxidizes rapidly in the pH range 6.0–7.4 while dithiothreitol is protected. Ligands which preferentially bind strongly to Fe2+ stabilize both Fe2+ and dithiothreitol at pH 7.4. Dithiothreitol readily reduces Fe3+ in non-chelating buffers or in the presence of strong chelators of Fe2+, however, the ferrous ions produced are prone to reoxidation at higher pH values. These results show that Fe2+ and dithiothreitol are very susceptible to autoxidation in the neutral pH range, and that the rates are strongly influenced by the presence of chelators of Fe2+ and Fe3+. The rapid autoxidations of these species need to be taken into account when designing and interpreting experiments involving Fe2+ or both dithiothreitol and iron.  相似文献   

2.
Because buffers can act as metal ligands, they can effect several reactions necessary for DNA oxidation by ferric iron and thiols, such as iron reduction. Therefore, these reactions were studied in Hepes and phosphate buffers and unbuffered NaCl. Reduction of Fe3+ by dithiothreitol (DTT) and cysteine was observed in either Hepes or NaCl solutions, but not in phosphate buffer. Thiyl radicals were observed in Hepes, but there was much less thiyl radical production in the saline or phosphate solutions. Redox cycling between either DTT or cysteine and Fe3+ also resulted in dioxygen consumption in Hepes buffer. Reduction of Fe3+ and O2 resulted in the formation of an oxidant capable of producing 8-hydroxy-2′-deoxyguanosine (8-OHdG) in calf-thymus DNA. The highest levels of 8-OHdG were detected when DTT or cysteine and Fe3+ were incubated in Hepes, while much less DNA oxidation was detected when the experiment was done in a saline solution, and almost no DNA oxidation occurred in the phosphate buffer. These results demonstrate that the use of different buffers can greatly affect the ability of thiols to promote iron-dependent oxidations. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 125–132, 1998  相似文献   

3.
《Free radical research》2013,47(4-5):237-243
Fecl2, in Na phosphate buffer autoxidizes forming active oxygen species which damage deoxyribose. Di-and triphosphate adenine-nucleotides inhibit both Fe2+ autoxidation and deoxyribose damage in Na phosphate buffer pH 7.4. The inhibition is related to the number of charges of the adenine-nucleotide molecule: ATP at pH 7.4 is a better inhibitor than ADP; at a pH (6.5) close to the pK's of the third and fourth charge of ADP and ATP, ADP inhibition is greatly decreased whereas ATP inhibition is slightly affected. The extent of ATP inhibition of Fe2+ autoxidation depends both on ATP/Mg2+ and ATP/Fe2+ ratios in the reaction mixture. Formation of a Fe2+ -nucleotide complex appears to be the mechanism through which ATP and ADP inhibit autoxidation and thus the generation of active oxygen species. These findings are discussed in relation to physiological and pathological fluctuations of nucleotide concentrations.  相似文献   

4.
The oxidation of arachidonic acid by ferrous sulfate provides a useful model to study the role of iron in lipid oxidation reactions. We have employed nitroblue tetrazolium (NBT) in the present investigation to evaluate the mechanism of this reaction. In the presence of arachidonic acid, Fe++, and O2, the yellow dye NBT was rapidly reduced to the blue form, NBTH2. The molar ratio of arachidonic acid to Fe++ in this rapid reaction was 1:1, showing an interaction of one fatty acid molecule per iron molecule. Approximately one molecule of NBT was reduced per four molecules of arachidonic acid and Fe++. Reduction of NBT was accompanied by oxidation of Fe++ to Fe+++, suggesting the transfer of four electrons from the Fe++ to NBT to reduce the dye. Arachidonic acid was found to be unchanged when extracted at the end of the reaction, indicating formation of a complex that could dissociate leaving intact arachidonic acid. Evidence for the presence of such a complex which slowly dissociates during the reaction was obtained after longer incubations with small amounts of arachidonic acid. NBT reduction was not inhibited by agents which hydrolyze superoxide, by catalase or by agents which trap hydroxy radicals. We, therefore, propose a model in which NBT traps a radical generated on the arachidonic acid molecule. The proposed model suggests mechanisms for other fatty acid oxidation reactions such as prostaglandin and hydroperoxy fatty acid synthesis.  相似文献   

5.
Problems caused by the presence of adventitious metals in buffers and reagents are well recognized in studies of metal-catalyzed oxidation reactions. In most cases, metal contamination leads to an increase in rate, and chelating agents are inhibitory. In the present study, however, the rate of copper-catalyzed oxidation of cysteine was found to be increased by buffer purification with Chelex resin or by addition of micromolar concentrations of the specific iron chelator desferrioxamine (DFO). These effects are attributable to inhibition of copper-catalyzed oxidation by adventitious iron. In purified buffer at pH 7.25, containing 0.4 microM copper, cysteine was oxidized at a rate of 32 microM/min. Addition of iron salts to this buffer caused a dose-related decrease in this rate, up to a maximum of 85%. A 50% decrease in rate was recorded at an iron concentration of only 11 nM. Other transition metals were without effect. Similar effects of purification or addition of DFO on the rate of cysteine oxidation were seen in Tris, glycylglycine, Mops, and Pipes buffers. Catalase decreased the rate of cysteine oxidation, but the sensitivity to iron was similar in the presence and absence of catalase. Copper-catalyzed oxidation of cysteamine and reduced glutathione was much less sensitive to inhibition by iron. Our results offer an explanation for the conflicting literature reports of the effects of chelating agents and catalase on cysteine oxidation, and emphasize the need for buffer purification or addition of DFO in studies concerned with the oxidation or cytotoxicity of this thiol. The exceptional sensitivity of copper-catalyzed cysteine oxidation to iron makes this an attractive system for monitoring the iron content of buffers, and may also have application for determining the free iron content of physiological fluids.  相似文献   

6.
Human lactotransferrin binds 2 Fe3+ tightly at two specific sites. In order to demonstrate differences between the stability of the two iron-binding sites, the removal of iron was studied in buffers in the pH range 8-3 varying the ionic strength and with or without metal chelators such as phosphate ions and EDTA.The results show that in the presence of formate and acetate buffers of ionic strength 0.1–0.4 and in a pH range of 5–3, the two Fe3+ from human lactotransferrin are removed stimultaneously.Addition of 4 mM EDTA to buffers of ionic strength 0.1 and in the pH range 8–3 shows that between pH 5–4.3 the iron from only one of the binding sites, called the ‘acid labile’ site, is removed.Addition of 0.2 M phosphate ions to buffers of ionic strength 0.2 and in pH range 8–3 containing 4 mM EDTA shows that Fe3+ from the ‘acid labile’ site may be completely removed at pH 6. Removal of Fe3+ from the ‘acid stable’ site is obtained at pH 4.The differential behavior of the two iron binding sites was also shown by saturation experiments in the presence of citrate/bicarbonate buffers at different pH values. In a pH range 6.2–4.8, 50% saturation was obtained, but at pH 6.35 complete saturation was achieved. When saturation of partially saturated samples of human lactotransferrin was performed with 59Fe it was demonstrated that in the pH range 6.2–4.8 iron is bound only to the ‘acid labile’ site.  相似文献   

7.
Quinolinate (pyridine-2,3-dicarboxylic acid, Quin) is a neurotoxic tryptophan metabolite produced mainly by immune-activated macrophages. It is implicated in the pathogenesis of several brain disorders including HIV-associated dementia. Previous evidence suggests that Quin may exert its neurotoxic effects not only as an agonist on the NMDA subtype of glutamate receptor, but also by a receptor-independent mechanism. In this study we address ability of ferrous quinolinate chelates to generate reactive oxygen species. Autoxidation of Quin-Fe(II) complexes, followed in Hepes buffer at pH 7.4 using ferrozine as the Fe(II) detector, was found to be markedly slower in comparison with iron unchelated or complexed to citrate or ADP. The rate of Quin-Fe(II) autoxidation depends on pH (squared hydroxide anion concentration), is catalyzed by inorganic phosphate, and in both Hepes and phosphate buffers inversely depends on Quin concentration. These observations can be explained in terms of anion catalysis of hexaaquairon(II) autoxidation, acting mainly on the unchelated or partially chelated pool of iron. In order to follow hydroxyl radical generation in the Fenton chemistry, electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed. In the mixture consisting of 100 mM DMPO, 0.1 mM Fe(II), and 8.8 mM hydrogen peroxide in phosphate buffer pH 7.4, 0.5 mM Quin approximately doubled the yield of DMPO-OH adduct, and higher Quin concentration increased the spin adduct signal even more. When DMPO-OH was pre-formed using Ti3+/hydrogen peroxide followed by peroxide removal with catalase, only addition of Quin-Fe(II), but not Fe(II), Fe(III), or Quin-Fe(III), significantly promoted decomposition of pre-formed DMPO-OH. Furthermore, reaction of Quin-Fe(II) with hydrogen peroxide leads to initial iron oxidation followed by appearance of iron redox cycling, detected as slow accumulation of ferrous ferrozine complex. This phenomenon cannot be abolished by subsequent addition of catalase. Thus, we propose that redox cycling of iron by a Quin derivative, formed by initial attack of hydroxyl radicals on Quin, rather than effects of iron complexes on DMPO-OH stability or redox cycling by hydrogen peroxide, is responsible for enhanced DMPO-OH signal in the presence of Quin. The present observations suggest that Quin-Fe(II) complexes display significant pro-oxidant characteristics that could have implications for Quin neurotoxicity.  相似文献   

8.
《Free radical research》2013,47(4-5):245-252
To find experimental conditions to selectively study the propagation phase of lipoperoxidation we studied the lipoperoxidation, catalyzed by FeCl2, of liposomes in a buffering condition where Fe2+ autoxidation and oxygen active species generation does not occur. Liposomes from egg yolk phosphatidylcholine. prepared by vortex mixing, do not oxidize Fe2+: on the contrary they oxidize Fe2+ when prepared by ultrasonic irradiation. Dimyristoyl phosphatidylcholine liposomes prepared by ultrasonic irradiation do not oxidize Fe2+. During sonication polyunsaturated fatty acid residues autoxidize and lipid hydroperoxides (LOOH) are generated. Only when LOOH are present in the liposimes Fe2+ oxidizes and its rate of oxidation depends on the amount of LOOH in the assay. The reaction results in the generation of both LOOH and thiobarbituric acid reactive material (TBAR): it is inhibited by butylated hydroxytoluene and has a acidic pH optimum; it is not inhibited by catalase and OH' scavengers. The reaction studied. thus, appears to be the chain branching and propagation phase of lipoperoxidation. When we studied the dependence of Fe2+ oxidation, LOOH and TBAR generation on FeCl2 concentration, we observed that at high FeCl2 concentrations the termination phase of lipoperoxidation was prevalent. Thus. by selecting the appropriate FeCl2 concentration the proposed experimental system allows study of either the propagation or the termination phase of lipoperoxidation.  相似文献   

9.
Effects of protease inhibitors on liver regeneration   总被引:2,自引:0,他引:2  
The oxidation of Fe2+ to Fe3+ by oxygen at pH 7.45 is a first order reaction with a 25 minute half life. In the presence of apotransferrin the oxidation rate is greatly enhanced and Fe3+-transferrin is formed. The apotransferrin mediated reaction reaches 50% completion in one minute; it does not follow simple first order kinetics. Iron-saturated transferrin does not exhibit the rate enhancement effect suggesting that the specific metal binding sites are the loci of the iron oxidation. Addition of H2O2, an agent which rapidly oxidizes Fe2+ to Fe3+, during the reaction of Fe2+ with apotransferrin greatly decreases the yield of Fe3+-transferrin. It is postulated that the basis of the rate enhancement effect is the binding of Fe2+ to the metal binding site of the transferrin molecule, followed by a rapid oxidation of the iron to the trivalent form.  相似文献   

10.
The stability of (all-E)-β-carotene toward dietary iron was studied in a mildly acidic (pH 4) micellar solution as a simple model of the postprandial gastric conditions. The oxidation was initiated by free iron (FeII, FeIII) or by heme iron (metmyoglobin, MbFeIII). FeII and metmyoglobin were much more efficient than FeIII at initiating β-carotene oxidation. Whatever the initiator, hydrogen peroxide did not accumulate. Moreover, β-carotene markedly inhibited the conversion of FeII into FeIII. β-Carotene oxidation induced by FeII or MbFeIII was maximal with 5–10 eq FeII or 0.05–0.1 eq MbFeIII and was inhibited at higher iron concentrations, especially with FeII. UPLC/DAD/MS and GC/MS analyses revealed a complex distribution of β-carotene-derived products including Z-isomers, epoxides, and cleavage products of various chain lengths. Finally, the mechanism of iron-induced β-carotene oxidation is discussed. Altogether, our results suggest that dietary iron, especially free (loosely bound) FeII and heme iron, may efficiently induce β-carotene autoxidation within the upper digestive tract, thereby limiting its supply to tissues (bioavailability) and consequently its biological activity.  相似文献   

11.
d,l-L-Tetrahydrofolate (d,l-L-FH4) transfers two electrons to nitro-blue tetrazolium (NBT) in oxygen-free buffers to form the highly coloured nitro-blue formazan and oxidized folate. Both the rate and extent of this reaction are affected by the pH, the nature of the buffer and the oxygen concentration. Inhibition of both the rate and extent of this reaction in air-saturated solutions by superoxide dismutase (SOD) indicates that the superoxide anion is an intermediate in the reaction so that formazan can be produced by both superoxide independent and superoxide dependent routes in air-saturated solutions.In oxygen-free solutions several lines of evidence can be interpreted to mean that the reduced pteridine ring of tetrahydrofolate is the electron donor in the reaction with NBT. Ionization of the amide hydrogen of the pteridine ring and subsequent increase in electron density of that ring might explain the large increases observed in the rate and extent of the reaction of tetrahydrofolate with NBT as the pH increases. Formaldehyde reacts non-enzymatically with tetrahydrofolate to form a methylene bridge between nitrogens 5 and 10 of methylenetetrahydrofolate. This molecule is much less reactive with nitro-blue tetrazolium than tetrahydrofolate. Complexes formed between tetrahydrofolate and palladium(II) ions are also less reactive with NBT than the tetrahydrofolate alone. This result provides added evidence that palladium(II) ions interact with tetrahydrofolate at the nitrogen 5, nitrogen 10 site of the molecule.  相似文献   

12.
G. Bottu 《Luminescence》1991,6(3):147-151
The chemiluminescence of the system luminol +Fe2+ + H2O2 was measured in aqueous buffer at pH 7.2. In veronal (5,5-diethybarbiturate) buffer, the luminescence is strongly quenched by ethanol and mannitol, but only weakly by t-butanol, benzoate and superoxide dismutase (SOD); complexing Fe2+ with 1,10-phenanthroline or 2,2′-dipyridyl causes a decrease of light production that can be partially obviated by the simultaneous addition of SOD. In phosphate buffer, the luminescence is higher than in veronal and it is efficiently quenched by all four OH · quenchers and by SOD. In Tris buffer, no light production is observed as long as the Fe2+ is not complexed. When Fe2+ is complexed by pyrophosphate or phytate, there is a strong chemiluminescence in all three buffers, which is quenched by all four OH · quenchers and by SOD. When Fe2+ is complexed by EDTA or DTPA, very little luminescence is observed. The luminol analogue phthalhydrazide, which was suggested by Merényi and Lind as a reliable OH · detector, can replace luminol only in phosphate buffer, and thus turns out to be very specific indeed for free OH ·.  相似文献   

13.
The Maillard reaction of DNA with ketoses was investigated. Several days of incubation of d-fructose 6-phosphate with deoxyribonucleotides or with polymer DNA in an aqueous buffer resulted in the formation of chromophores and fluorophores. Aminoguanidine and sodium cvanoborohydride inhibited the formation of fluorophores. Transition metal ions such as Cu2+, Fe3+, Fe2+, or Mn2 + promoted the formation of chromophores and fluorophores. Metal-chelating agents such as DETAPAC, citrate, and Desferal inhibited the formation of fluorophores. Superoxide dismutase and catalase also inhibited the formation of fluorophores. The transition metal ion-catalyzed autoxidation of d-fructose 6-phosphate or of the Heyns rearrangement products were to be partially involved in the glycation of DNA and subsequent formation of chromophores and of fluorophores.  相似文献   

14.
The rate of ferritin formation in the buffers 4-morpholinepropanesulphonic acid (Mops), 4-morpholineethanesulphonic acid (Mes) and imidazole at pH values from 5.0 to 6.5 is quite similar. However, the rate of iron deposition is much greater in Mops and Mes at pH values above 6.5 than in imidazole. Increasing the concentration of imidazole inhibits ferritin formation and also leads to a transformation in the shape of the kinetic curves observed. This inhibiton is also observed at constant ionic strength but is not found for non-complexing buffers such as Mops. An inhibition of ferritin formation in imidazole and in Mops buffers is also observed with increasing ionic strength. We conclude that the unprotonated form of imidazole inhibits iron deposition, possibly by binding to the active site of the apoferritin molecule. The temperature dependence of iron deposition was examined. An optimum temperature of 50 degrees C was found but the Arrhenius plots were non-linear. On the basis of these and previous results, a kinetic model is developed which accounts well for ferritin formation at pH values below 6.5 and above 7.0 in non-complexing buffers. The model does not account for the kinetics observed at pH values close to neutrality.  相似文献   

15.
Data are presented regarding the establishment of the pH (designated pH*) of a standard buffer solution suitable as a pH reference in 50 mass% glycerol/water mixtures at temperatures ranging from −20 to 25 °C. The buffer material selected was the ampholyte Mops [(3-N-morpholino)-propane sulfonic acid], and the reference standard consists of equal molal amounts of Mops and its sodium salt. The assignment of pH* values is based on measurements of the electromotive force (emf) of cells without liquid junction of the type: Pt;H2(g,1 atm) ¦ Mops, Na Mopsate, NaCl ¦ AgCl;Ag and the pH* was derived from a determination of K2, the equilibrium constant for the dissociation process (Mops)±/ah (Mopsate) + H +. The standard emf of the silver-silver chloride electrode in 30, 40, and 50 mass% glycerol/water mixtures was determined from emf measurements of the cell at subzero temperatures with HCl solutions replacing the buffer-chloride mixtures.  相似文献   

16.
A new technique of plant analysis to resolve iron chlorosis   总被引:4,自引:0,他引:4  
Summary Iron though indispensable for the biosynthesis of chlorophyll, its total content in the plant was not associated with the occurrence of chlorosis. In order to overcome this inconsistency a new technique of plant iron analysis has been developed. It consists of the determination of Fe2+, the fraction of iron involved in the synthesis of chlorophyll.The choice of 1–10 o-phenanthroline (o-Ph) as an extractant for Fe2+ was based on its remarkably higher stability constant for Fe2+ than Fe3+. On this basis, it could preferentially chelate Fe2+. The highly specific organce colour of the Fe2+-phenanthroline complex made possible the determination of Fe2+ by reading the transmittancy at 510 nm.The procedure involves extraction of 2 g of thoroughly washed, chopped, fresh plant by 20 ml of o-phenanthroline extractant (pH 3.0, conc. 1.5%). The plant samples treated with the extractant are allowed to stand for 16 hours and Fe2+ is determined in the filtrate by reading the transmittancy at 510 nm.In sharp contrast to total iron the green plants always contained more Fe2+ than chlorotic plants. The technique has been developed for rice but is expected to be successful for other crops also.  相似文献   

17.
Good's zwitterionic buffers are widely used in biological and biochemical research in which hydrogen peroxide is a solution component. This study was undertaken to determine whether Good's buffers exhibit reactivity toward H(2)O(2). It is found that H(2)O(2) oxidizes both morpholine ring-containing buffers (e.g., Mops, Mes) and piperazine ring-containing zwitterionic buffers (e.g., Pipes, Hepes, and Epps) to produce their corresponding N-oxide forms. The percentage of oxidized buffer increases as the concentration of H(2)O(2) increases. However, the rate of oxidation is relatively slow. For example, no oxidized Mops was detected 2h after adding 0.1M H(2)O(2) to 0.1M Mops (pH 7.0), and only 5.7% was oxidized after 24h exposure to H(2)O(2). Thus, although all of these buffers can be oxidized by H(2)O(2), their slow reaction does not significantly perturb levels of H(2)O(2) in the time frame and at the concentrations of most biochemical studies. Therefore, the previously reported rapid loss of H(2)O(2) produced from the ferroxidase reaction of ferritin is unlikely due to reaction of H(2)O(2) with buffer, a conclusion supported by the fact that H(2)O(2) is also lost rapidly when the solution pH of the ferroxidase reaction is controlled by a pH stat apparatus in the absence of buffer.  相似文献   

18.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

19.
Characteristics of polydisulfides of gallic acid (PDSG), 2-amino-4-nitrophenol (PDSANP), and biuret (PDSB) depending on the composition of the aqueous medium were studied. In contrast to PDSANP and PDSB, there was oxidation of PDSG with accumulation of products of polydisulfide transformation in the medium. The rate of PDSG autoxidation depended on pH on the concentration of polydisulfide and buffers and increased at high pH. The rate of oxidation significantly increased in the presence of DMPA, ethanol, or CTAB (surfactant). Decreasing the pH of the solution and adding ovalbumin and/or Triton X-100 to the medium can decrease the rate of autoxidation of PDSG in an aqueous medium. Exogenous H2O2 inhibited the oxidation of PDSG. The secondary structure of catalase was changed by PDSG. Electrical conductance of PDSG and PDSANP solutions was studied. Possible mechanisms of PDSG autoxidation and polydisulfides-protein interaction due to forces of cooperative electrostatic interaction, thiol-disulfide exchanges, and nucleophilic replacements were discussed.  相似文献   

20.
Summary Hydroxyl radicals (OH') can be formed in aqueous solution by direct reaction of hydrogen peroxide (H2O2) with ferrous salt (Fenton reaction). OH' damage to deoxyribose, measured as formation of thiobarbituric acid-reactive material, was evaluated at different pHs to study the mechanism of action of classical OH' scavengers. OH' scavenger effect on Fe2+ oxidation was also evaluated in the same experimental conditions. In the absence of OH' scavengers, OH' damage to deoxyribose is higher at acidic compared to neutral and moderately basic pH. At acidic pH deoxiribose is per se able to inhibit Fe2+ oxidation by H202. Most of OH' scavengers tested inhibit deoxyribose damage and Fe2+ oxidation in a similar manner: both inhibitions are most relevant at acidic pH and decrease by increasing the pH. These results are not due to OH' scavenger inhibition of Fenton reaction. The influence of pH on the parameters studied appears to be due to the competition of deoxyribose and OH' scavengers for iron. These results suggest the prominent role of iron binding in the degradation of deoxyribose and in the OH' scavenging ability of different compounds. Results obtained with triethylenetetramine, a iron chelator with a low rate constant with OH', confirm that both deoxyribose and the OH' scavengers interact with iron bringing about a site specific Fenton reaction; that the OH' formed at these sites oxidize these molecules to their radical forms which in turn reduce the Fe3– produced by Fenton reaction. The results presented indicate that most of classical OH' scavengers exert their effect predominantly by preventing the site specific reaction between Fe2+ and H202 on the deoxyribose molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号