首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of microsomal membranes from cotyledons of Phaseolus vulgaris with ozone raises the liquid-crystalline to gel lipid phase transition temperature and results in the formation of distinct domains of gel phase lipid in the membranes. Liposomes prepared from the total lipid extracts of ozone-treated membranes undergo phase separations just a few degrees below the transition temperature for intact membranes, indicating that the formation of gel phase lipids is largely attributable to ozone-induced alterations in the membrane lipids. Levels of unsaturated fatty acids as well as the sterol to phospholipid ratio are markedly reduced in the ozone-treated membranes, and the neutral lipid fraction from treated membranes shows, an increased propensity to induce the formation of gel phase phospholipid when incorporated into liposomes of egg phosphatidylcholine. Since gel phase phospholipid also forms in naturally senescing plant membranes and appears to be attributable to changes in the neutral lipid fraction, the effects of natural senescence and ozone on membranes have been compared.  相似文献   

2.
The antioxidant activity of epigallocatechin gallate (EGCG) was studied in different in vitro model systems, which enabled evaluation of both chemical and physical factors involved in assessing the role of EGCG in oxidative reactions. EGCG suppressed the initiation rate and prolonged the lag phase duration of peroxyl radical-induced oxidation in a phospholipid liposome model to a greater extent (p < 0.01) compared to both Trolox and -tocopherol. Effectiveness of these antioxidants to prolong the peroxyl radical-induced lag phase was inversely related to lipophilic character. EGCG also protected against both peroxyl radical and hydroxyl radical-induced supercoiled DNA nicking. The rate constant describing EGCG reaction against hydroxyl radical was 4.22 ± 0.07 × 1010 M–1·sec–1, which was comparable to those of Trolox and -tocopherol, respectively. EGCG exhibited a synergistic effect with -tocopherol in scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH) radical, thus displaying a direct free radical scavenging capacity. In vitro Cu2+-induced-human LDL oxidation was accelerated in the presence of EGCG and attributed to the conversion of Cu2+ to Cu+. We conclude that the particularly effective antioxidant properties of EGCG noted in both chemical and biological biphasic systems were related to a unique hydrophilic and lipophilic balance which enabled effective free radical scavenging. The same chemical-physical properties of EGCG also enabled prooxidant activity, only when in contact with unbound transition metal ions in a multiphasic system.  相似文献   

3.
Oxidative stress has been implicated in the development of many neurodegenerative diseases and also responsible from aging and some cancer types. Indolic compounds are a broad family of substances present in microorganisms, plants and animals. They are mainly related to tryptophan metabolism, and present particular properties that depend on their respective chemical structures. Due to free radical scavenger and antioxidant properties of indolic derivatives such as indolinic nitroxides and melatonin, a series of 2-phenyl indole derivatives were prepared and their in vitro effects on rat liver lipid peroxidation levels, superoxide formation and DPPH stable radical scavenging activities were determined against melatonin, BHT and α-tocopherol. The compounds significantly inhibited (72–98%) lipid peroxidation at 10? 3 M. These values were similar to that observed with BHT (88%). Possible structure–activity relationships of the compounds were discussed.  相似文献   

4.
The major objectives of the present work were focused on assessing the antioxidant capacities of two hydroxyl-substituent Schiff bases, 2-((o-hydroxylphenylimino)methyl)phenol (OSAP) and 2-((p-hydroxylphenylimino)methyl)phenol (PSAP) either used alone or in combination with some familiar water-soluble antioxidants i.e. 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and L-ascorbic acid (VC), and lipophilic ones i.e. alpha-tocopherol (TOH) and L-ascorbyl-6-laurate (VC-12). 2,2'-Azobis(2-amidinopropane hydrochloride) (AAPH). Induced hemolysis of human erythrocytes functioned as the evaluation experimental system in this research. The present findings showed that either OSAP or PSAP not only was an antioxidant with high activity in protecting erythrocytes against AAPH-induced hemolysis concentration-dependently, but can also protect erythrocytes by acting with Trolox, TOH, VC and VC-12 synergistically. Based on chemical kinetic deduction, the number of trapping peroxyl radicals, n, of the above-mentioned antioxidants can be calculated in relation to Trolox that traps two peroxyl radicals; thus, TOH can trap 3.83 peroxyl radicals, VC-12 traps 2.87 and VC can only trap 1.08. As for OSAP and PSAP, 8.71 and 13.7 peroxyl radicals can be trapped, respectively, indicating that they were the most efficient inhibitors against AAPH-induced hemolysis. Moreover, the total number of peroxyl radicals trapped by OSAP+Trolox, OSAP+TOH, OSAP+VC and PSAP+VC were higher than the sum of the above individual antioxidant used alone, demonstrating that a mutual promotive effect existed in the above mixed antioxidants. In contrast, owing to the fact that the total number of peroxyl radicals trapped by OSAP+VC-12, PSAP+Trolox, PSAP+TOH and PSAP+VC-12 were less than the sum of the above individual antioxidant used alone, a mutual antagonistic effect was suggested in these combinative usages. This information may be helpful in the pharmaceutical application of two Schiff bases.  相似文献   

5.
Li W  Wu Y  Ren C  Lu Y  Gao Y  Zheng X  Zhang C 《Proteins》2011,79(1):115-125
Free radicals are by-products of metabolism and exist in a homeostasis between generation and scavenging in vivo. Excessive free radicals cause various diseases, including nervous system diseases. Neuroglobin (Ngb), a nervous system-specific oxygen-binding protein, has been suggested to be a potential free radical scavenger in the nervous system in vivo; however, its underlying mechanism remains unclear. In this study, we investigated the antioxidant potential and free radical scavenging properties of recombinant human Ngb (rhNgb) in vitro. Interestingly, we found that the rhNgb protein itself has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including the [2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulfonic acid)] (ABTS) cation, superoxide anion, hydrogen peroxide, and hydroxyl radical. The capacity of rhNgb to scavenge the superoxide anion and hydrogen peroxide was even comparable to that of vitamin C. In addition, rhNgb had Fe(2+) chelating activity but hemoglobin did not. In conclusion, our results indicated that the rhNgb protein itself has antioxidant and free radical scavenging activities, providing fundamental evidence for the neuroprotective function of Ngb. These data provide key information for the origin of the neuroprotective and physiological role of Ngb and will promote the treatment of reactive oxygen species (ROS)-related diseases using this novel oxygen-binding globin.  相似文献   

6.
Cardiolipin is a unique four-tailed, doubly negatively charged lipid found predominantly within the inner mitochondrial membrane, and is thought to be influential in determining membrane potential and permeability. To determine the role of cardiolipin in modulating the properties of membranes, this study investigates the thermodynamics of mixed cardiolipin and phosphatidylcholine monolayers and bilayers. Gibbs free energy analysis of mixed monolayers indicates that at low cardiolipin concentrations (5-10 mol%), there is a positive deviation from ideality on a pure water subphase, while at physiological salt concentrations a negative deviation from ideality is observed. The mechanical properties of bilayers containing cardiolipin were measured using micropipette aspiration. Both apparent area compressibility modulus, as well as lysis tension, decrease with increasing cardiolipin content. This destabilization indicates a decrease in the cohesive energy of the membrane. This interplay between interactions of lipids in monolayers and bilayers, suggests cardiolipin plays a dual role in modulating membrane properties. Cardiolipin enhances lateral interactions between lipids within monolayer leaflets, while simultaneously decreasing the cohesive energy of membranes at physiologically relevant concentrations. Taken together, these findings correlate with the decreased permeability and creation of folds in the inner mitochondrial membrane.  相似文献   

7.
We studied the incorporation of the hydrophobic anticancer drug paclitaxel (PXL), into a variety of lipid matrices by X-ray diffraction (XRD) measurements. Liposome suspensions from cationic and zwitterionic lipids, containing different molar fractions of paclitaxel were made and deposited on planar glass substrates. After drying at controlled relative humidity, aligned multilayer stacks were obtained. The structure perpendicular to the substrate plane was investigated by X-ray diffraction measurements. Bragg peaks to several orders were detected, indicative of well-ordered multilamellar lipid layers. The drug induced a modification of the bilayer spacing, which was the characteristic for a given type of lipid matrix. With an excess of the drug, Bragg peaks of drug crystals could be observed. The results provide insight into the solubility of paclitaxel in the different lipid membranes. A structural model of the organization of the drug in the membrane was discussed.  相似文献   

8.
The antioxidative properties of ascorbigen, one of the major indole-derived compounds of Brassica vegetables, were systematically evaluated using multiple assay systems with comparison to the well-known antioxidants ascorbic acid and Trolox. We first performed assays using model radicals, DPPH radical, galvinoxyl radical, and ABTS radical cation (ABTS?+). Ascorbigen showed stronger activity than that of ascorbic acid in the ABTS?+-scavenging assay but showed no activity in the DPPH radical- and galvinoxyl radical-scavenging assays. In the ABTS?+-scavenging assay, the indole moiety of ascorbigen contributed to scavenging of the radicals to produce indole-3-aldehyde as one of the final reaction products. The activity of ascorbigen was then evaluated by an oxygen radical absorbance capacity assay and an oxidative hemolysis inhibition assay using physiologically relevant peroxyl radicals, AAPH-derived radicals. Ascorbigen showed much stronger antioxidant activity than did ascorbic acid and Trolox. Therefore, antioxidant activity of ascorbigen might be more beneficial than has been thought for daily health care.  相似文献   

9.
Sterols are one of the major components of cellular membranes. Although in mammalian membranes cholesterol is a predominant sterol, in the human organism plant sterols (phytosterols) can also be found. Phytosterols, especially if present in concentrations higher than normal (phytosterolemia), may strongly affect membrane properties. In this work, we studied phytosterol-phospholipid interactions in mixed Langmuir monolayers serving as model membranes. Investigated were two phytosterols, beta-sitosterol and stigmasterol and a variety of phospholipids, both phosphatidylethanolamines and phosphatidylcholines. The phospholipids had different polar heads, different length and saturation of their hydrocarbon chains. The interactions between molecules in mixed sterol/phospholipid films were characterized with the mean area per molecule (A(12)) and the excess free energy of mixing (DeltaG(Exc)). The effect of the sterols on the molecular organization of the phospholipid monolayers was analyzed based on the compression modulus values. It was found that the incorporation of the phytosterols into the phospholipid monolayers increased their condensation. The plant sterols revealed higher affinity towards phosphatidylcholines as compared to phosphatidylethanolamines. The phytosterols interacted more strongly with phospholipids possessing longer and saturated chains. Moreover, both the length and the saturation of the phosphatidylcholines influenced the stoichiometry of the most stable complexes. Our results, compared with those presented previously for cholesterol/phospholipid monolayers, allowed us to draw a conclusion that the structure of sterol (cholesterol, beta-sitosterol, stigmasterol) does not affect the stoichiometry of the most stable complexes formed with particular phospholipids, but influences their stability. Namely, the strongest interactions were found for cholesterol/phospholipids mixtures, while the weakest for mixed systems containing stigmasterol.  相似文献   

10.
Hispidulin (6-methoxy-5,7,4'-trihydroxyflavone) and eupafolin (6-methoxy-5,7,3',4'-tetrahydroxyflavone), are flavonoids found in the leaves of Eupatorium litoralle. They have recognized antioxidant and antineoplastic properties, although their action mechanisms have not been previously described. We now report the effects of hispidulin on the oxidative metabolism of isolated rat liver mitochondria (Mit) and have also investigated the prooxidant and antioxidant capacity of both flavonoids. Hispidulin (0.05-0.2 mM) decreased the respiratory rate in state III and stimulated it in state IV, when glutamate or succinate was used as oxidizable substrate. Hispidulin inhibited enzymatic activities between complexes I and III of the respiratory chain. In broken Mit hispidulin (0.2 mM) slightly inhibited ATPase activity (25%). However, when intact Mit were used, the flavonoid stimulated this activity by 100%. Substrate energized mitochondrial swelling was markedly inhibited by hispidulin. Both hispidulin and eupafolin were able to promote iron release from ferritin, this effect being more accentuated with eupafolin with the suggestion of a possible involvement of H2O2 in the process. Hispidulin was incapable of donating electrons to the stable free radical DPPH, while eupafolin reacted with it in a similar way to ascorbic acid. The results indicate that hispidulin as an uncoupler of oxidative phosphorylation, is able to release iron from ferritin, but has distinct prooxidant and antioxidant properties when compared to eupafolin.  相似文献   

11.
Antimicrobial peptides are major components of the innate self‐defence system and a large number of peptides have been designed to study the mechanism of action. In the present study, a small combinatorial library was designed to study whether the biological activity of Val/Arg‐rich peptides is associated with targeted cell membranes. The peptides were produced by segregating hydrophilic residues on the polar side and hydrophobic residues on the opposite side. The peptides displayed strong antimicrobial activity against Gram‐negative and Gram‐positive bacteria, but weak haemolysis even at a concentration of 256 µM. CD spectra showed that the peptides formed α‐helical‐rich structure in the presence of negatively charged membranes. The tryptophan fluorescence and quenching experiments indicated that the peptides bound preferentially to negatively charged phospholipids over zwitterionic phospholipids, which corresponds well with the biological activity data. In the in vivo experiment, the peptide G6 decreased the bacterial counts in the mouse peritoneum and increased survival after 7 days. Overall, a high binding affinity with negatively charged phospholipids correlated closely with the cell selectivity of the peptides and some peptides in this study may be likely candidates for the development of antibacterial agents. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy. Thus, delta F obtains a minimum at dP-doL approximately 0. These qualitative interpretations are supported by detailed numerical calculations of the various contributions to the interaction free energy, and of chain conformational properties. The range of the perturbation of lipid order extends typically over few molecular diameters. A rather detailed comparison of our approach to other models is provided in the discussion.  相似文献   

13.
The interaction of adriamycin with cardiolipin in model membranes and in various membrane preparations derived from rat liver mitochondria was studied and the results are analyzed in the light of a possible specific interaction between adriamycin and cardiolipin. It was found that adriamycin binds to cardiolipin-containing model membranes with a fixed stoichiometry of two drug molecules per cardiolipin. Furthermore, the extent of drug complexation by mitochondria and mitoplasts (inner membrane plus matrix) is in reasonable agreement with their cardiolipin content. In contrast, adriamycin-binding curves of inner membrane ghosts and submitochondrial particles reveal considerable association to an additional site, presumably RNA. The evidence for the potential importance of RNA as a target comes from experiments on outer membranes and microsomes which both appear to bind substantial amounts of adriamycin. Removal of the major part of the RNA associated with these fractions by EDTA treatment is accompanied by a dramatic reduction of binding capacity. We propose that endogenous RNA present in mitochondria and mitoplasts is not accessible for adriamycin at low concentrations of the drug due to the presence of an intact lipid barrier. This potential site comes to expression in ghosts and submitochondrial particles, due to the absence of an intact lipid bilayer and due to the inside-out orientation of the limiting membrane, respectively. Electron microscopical studies show that adriamycin induces dramatic changes in mitochondrial morphology, similar to the uncoupler-induced effects described by Knoll and Brdiczka (Biochim. Biophys. Acta 733, 102-110 (1983). Adriamycin has an uncoupling effect on mitochondrial respiration and oxidative phosphorylation. The concentration dependence of this effect correlates with the adriamycin-binding curve for mitochondria which implies that only bound adriamycin actively inhibits respiration.  相似文献   

14.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2′-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

15.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   

16.
Summary A highly enriched fraction of plasma membranes from the bovine adrenal medulla has been isolated by differential and sucrose gradient centrifugation. The membranes were found to occur as 0.1–0.5 diameter vesicles and to equilibrate at a density of 1.13–1.14 g/ml. This fraction was characterized by 4-fold elevated levels of adenylate cyclase and 20-fold elevated levels of 5-nucleotidase. Secretory vesicle membranes, isolated by repeated hypotonie and hypertonic shocks of whole vesicles, were found to equilibrate between d = 1.08 and d = 1.12 on a sucrose density step gradient. These membranes were highly enriched in cytochrome b562 and dopamine--hydroxylase. Proteins in the two membranes were compared by SDS gel electrophoresis. All protein size classes found in the vesicle membrane fraction were also represented in the plasma membrane fraction, though in different proportions on the basis of staining intensity. The plasma membrane fraction contained prominent bands co-migrating with the - and -bands of tubulin, as well as a component co-migrating with actin. These bands were absent from the vesicle membranes. Fingerprint analysis of stained bands from the membrane fraction demonstrated that the components were indeed tubulin and actin. The plasma membranes contained twice as much sialic acid residues as did the chromaffin granule membranes, but had only half the cholesterol content on a weight basis. The cholesterolphospholipid ratio in the plasma membranes was 0.63, while in the secretory vesicle membranes it was 1.04. These results show that plasma membranes and secretory vesicle membranes are functionally and structurally different.Supported, in part, by a stipend to O.Z. from The Grant Foundation, New York  相似文献   

17.
Evaluation of the antioxidant activity of tetracycline antibiotics in vitro   总被引:1,自引:0,他引:1  
Tetracyclines are the second most common antibiotic family in medicine usage. These antibiotics exhibit antioxidant potential; however, the exact mechanism remains unclear. The antiradical activity of the seven tetracyclines (TCs; tetracycline, chlortetracycline, oxytetracycline, doxocycline, methacycline, demeclocycline, minocycline) was determined using the free radical 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) and hydroxyl radicals (HO?) generated in a Fenton reaction. Electron spin resonance (ESR), ESR spin‐trapping, chemiluminescence and spectrophotometry techniques were applied. It was found that the TCs showed high DPPH antiradical activity in the range 26–96% at 2.5 mmol/L concentration. The second‐order rate constants for the reaction between HO? and TCs were calculated, in the range (3.6–9.6) × 109 L/mol/s. The tetracycline compounds also exhibited a strong decrease in light emission (range 61–85% at concentration of 1 mmol/L). This study also showed that TCs promote the generation of singlet oxygen in the presence of and Fe(II)/Fe(III) ions. Our findings suggest direct scavenging activity of the examined tetracyclines towards free radicals, and may be relevant to therapeutic strategy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Context: Increasing the lipophilicity and/or amphiphilicity of drugs is a potential strategy to improve loading and retention in lipid-based carriers, such as liposomes or lipid nanoparticles.

Objective: Idebenone (IDE), an antioxidant compound structurally related to coenzyme Q, or amphiphilic prodrugs of IDE with lipoamino acids, were loaded in neutral or negatively charged SUVET unilamellar liposomes to achieve a controlled release.

Methods: Technological properties of these systems in the presence of loaded drugs were evaluated in terms of vesicle size, homogeneity, and surface charge, as well as in vitro drug release. The effect of liposomal carrier on the in vitro antioxidant activity of the prodrugs was evaluated from using different biochemical assays on murine astrocyte cultures.

Results and discussion: Although a good loading efficiency was obtained, liposomes were not able to release efficiently the encapsulated drugs, at least in the in vitro serum-free conditions used for the biological tests. However, in some cases, such as in the comet assay, encapsulation of IDE prodrugs in liposomes allowed for the improvement of their protective activity, compared to the free compounds, against the oxidative damage induced on cultured astrocytes.

Conclusions: Experimental in vitro data suggested that the high affinity shown by these lipophilic IDE derivatives for the liposomal carriers negatively affect their biological activity.  相似文献   

19.
Remarkable progress has been achieved in the past 100 years in the field of free radical chemistry, biology and medicine since the discovery of free radicals in 1900. Free radical-mediated processes play a major role in the present industrial chemistry, but they also cause deleterious effects on rubber, plastics, oil products and foods. The importance of free radicals in vivo has been recognized increasingly from both positive and negative sides. Free radicals play an important role in phagocytosis, the production of some biologically essential compounds and possibly cell signaling. At the same time, they may cause oxidative modification of biological molecules, which leads to oxidative damage and eventually to various diseases, cancer and aging. The role and beneficial effects of antioxidants against such oxidative stress support this view. Furthermore, novel issues have been continuously found in this fascinating and yet controversial field of free radicals in biology. In this short article, the past work, present problems and future perspectives of free radicals in life science will be briefly discussed.  相似文献   

20.
Triclosan is a hydrophobic antibacterial agent used in dermatological preparations and oral hygiene products. Although the molecular mechanism of action of this molecule has been attributed to inhibition of fatty acid biosynthesis, earlier work in our laboratories strongly suggested that the antibacterial action of Triclosan is mediated at least partly through its membranotropic effects. In order to assess its location in phospholipid membranes, high-resolution magic-angle spinning natural abundance 13C NMR of Triclosan embedded within egg yolk lecithin model membranes has been used to obtain 13C spin–lattice relaxation times for both Triclosan and lecithin carbon atoms in the presence of Gd3+ ions. The results indicate that Triclosan is localized in the upper region of the phospholipid membrane, its hydroxyl group residing in the vicinity of the C=O/C2 carbon atoms of the acyl chain of the phospholipid, and the rest of the Triclosan molecule is probably aligned in a nearly perpendicular orientation with respect to the phospholipid molecule. Intercalation of Triclosan into bacterial cell membranes likely compromises the functional integrity of those membranes, thereby accounting for at least some of this compounds antibacterial effects.Abbreviations COLOC correlation by long-range coupling - EYL egg yolk lecithin - HETCOR heteronuclear chemical-shift correlation - MAS magic-angle spinning - MLV multilamellar vesicles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号