首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant pectate lyase from family 1 polysaccharide lyase (PL1B) was immobilized on synthesized magnetic nanoparticles (MNPs) after 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride activation. At 70 mg/mL MNPs 100% binding of 1 mg/mL PL1B was achieved. The immobilized PL1B‐MNP displayed activity of 20.3 and 18.2 U/mg against polygalacturonic acid and citrus pectin, respectively, which was higher than the activity of free PL1B, on the same substrates of 17.8 and 16.2 U/mg. The immobilized PL1B‐MNP showed 32 fold and 14 fold enhanced thermal stability at 80°C and 90°C, respectively as compared with free PL1B at same temperatures. At high temperature the immobilized PL1B‐MNP retained its activity for a longer duration than free PL1B. The immobilized PL1B‐MNP could be reused till five cycles and after that it retained 70% of initial activity. It could be easily recovered from the reaction mixture with the help of a magnet. Bioscouring of cotton fabric was carried out with immobilized PL1B‐MNP which showed efficient removal of pectin from the fabric surface. The enhanced wettability of fabric resulted in the decrease of the water absorbing time period from 3 min taken by the free PL1B treated fabric to 15 s taken by the immobilized PL1B‐MNP treated fabric. As per our knowledge this is the first attempt of bioscouring of coarse cotton fabric by pectinase immobilized on magnetic nanoparticles. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:231–244, 2017  相似文献   

2.
In this paper the effect of cutinase on the degradation of cotton seed coat is analyzed. Fourier transform infrared (FT-IR) microspectroscopy was applied to study the changes of chemical compositions in cotton seed coat epidermal layer and gas chromatography/mass spectrometry (GC/MS) was used to analyse cutinase depolymerization of cotton seed coat. Based on these arguments the ability of cutinase to degrade aliphatic components in cotton seed coat was verified. Positive effect of cutinase on degradation of cotton seed coat was observed with the combination of alkaline pectinase or xylanase. The removal of aliphatic components by cutinase enables other enzymes to penetrate into the inner of cotton seed coat. Cutinase can potentially improve the degradation of cotton seed coat during cotton fabric bio-scouring process.  相似文献   

3.
从碱性果胶酶在纺织清洁生产中的应用条件出发,在60℃和pH 9.1左右,系统研究了不同稳定剂对提高碱性果胶酶的稳定性的影响。由此,得到了对酶稳定性作用较突出的添加剂以及复合稳定剂,较佳配方为乙酸钠6%(m/v)、MgCl2.2H2O 2%(m/v)。结果表明,添加稳定剂后的碱性果胶酶在棉织物精练中的应用特性得到了提高,达到了棉织物精练的需要。  相似文献   

4.
Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209.  相似文献   

5.
There is a growing need in the textile industry for more economical and environmentally responsible approaches to improve the scouring process as part of the pretreatment of cotton fabric. Enzymatic methods using pectin-degrading enzymes are potentially valuable candidates in this effort because they could reduce the amount of toxic alkaline chemicals currently used. Using high throughput screening of complex environmental DNA libraries more than 40 novel microbial pectate lyases were discovered, and their enzymatic properties were characterized. Several candidate enzymes were found that possessed pH optima and specific activities on pectic material in cotton fibers compatible with their use in the scouring process. However, none exhibited the desired temperature characteristics. Therefore, a candidate enzyme was selected for evolution. Using Gene Site Saturation Mutagenesistrade mark technology, 36 single site mutants exhibiting improved thermotolerance were produced. A combinatorial library derived from the 12 best performing single site mutants was then generated by using Gene Reassemblytrade mark technology. Nineteen variants with further improved thermotolerance were produced. These variants were tested for both improved thermotolerance and performance in the bioscouring application. The best performing variant (CO14) contained eight mutations and had a melting temperature 16 degrees C higher than the wild type enzyme while retaining the same specific activity at 50 degrees C. Optimal temperature of the evolved enzyme was 70 degrees C, which is 20 degrees C higher than the wild type. Scouring results obtained with the evolved enzyme were significantly better than the results obtained with chemical scouring, making it possible to replace the conventional and environmentally harmful chemical scouring process.  相似文献   

6.
The main objective of the present study was to meticulously investigate an inclusive set of physicochemical and handle properties (determined through Kawabata evaluation system) of bioscoured cotton fabrics. The application of a commercial pectinase preparation, Bioprep 3000L, for a range of concentrations and treatment times, could create a pectin-free textile with low wax content. Multiple regression analysis was used to describe the effect of enzymatic process variables on pectin and waxes removal. Comparison of fabrics' properties such as wettability, whiteness, crystallinity index, and dyeing behaviour, confirmed that bioscouring could be as much effective as the conventional alkaline process. Uncovering the relationship between the composition of materials and their physicochemical properties was attempted. The application of higher enzyme concentrations generated fabrics with improved low-stress mechanical properties. Bending and shear rigidity, compressional resilience, as well as, extensibility of enzymatically treated cotton fabrics could be efficiently predicted by means of a single independent variable, the crystallinity index.  相似文献   

7.
8.
A whole broth extraction using an aqueous two-phase system (ATPS) composed by 5% (w/w) PEG 3350 and 15% (w/w) phosphate was used for the scale-up extraction and isolation of a recombinant Fusarium solani pisi cutinase, an extracellular mutant enzyme expressed in Saccharomyces cerevisiae, containing a fusion peptide (WP)4. The experiments were carried out at three different scales (10 ml, 1 l and 30 l). Mixing time and stirrer speed were evaluated at lab scale (1 l) with two different system compositions. Stirrer speed between 400 and 800 rpm and mixing time between 2 and 5 min led to the highest recoveries of cutinase. In all cases, inclusive of pilot scale (30 l), the equilibrium was reached after a few minutes. The performance of ATPS was reproducible within the scale range of 0.010–30 l and provided a standard deviation of the yield lower than 8%, leading to (i) a partition coefficient over 50, (ii) a yield over 95% and (iii) a concentration factor over 5. The fusion of the peptide (WP)4 to the cutinase protein enabled a 400 increase of the partition coefficient relative to the wild-type strain.  相似文献   

9.
Aspergillus oryzae hydrophobin RolA adheres to the biodegradable polyester polybutylene succinate-co-adipate (PBSA) and promotes PBSA degradation by interacting with A. oryzae polyesterase CutL1 and recruiting it to the PBSA surface. In our previous studies, we found that positively charged amino acid residues (H32, K34) of RolA and negatively charged residues (E31, D142, D171) of CutL1 are important for the cooperative ionic interaction between RolA and CutL1, but some other charged residues in the triple mutant CutL1-E31S/D142S/D171S are also involved. In the present study, on the basis of the 3D-structure of CutL1, we hypothesized that D30 is also involved in the CutL1–RolA interaction. We substituted D30 with serine and performed kinetic analysis of the interaction between wild-type RolA and the single mutant CutL1-D30S or quadruple mutant CutL1-D30S/E31S/D142S/D171S by using quartz crystal microbalance. Our results indicate that D30 is a novel residue involved in the ionic interaction between RolA and CutL1.  相似文献   

10.
Cationic cotton was prepared by a designed two-bath pad-bake process with 3-chloro-2-hydroxypropyltrimethylammonium chloride as cationizing reagent to realize recycle utilization of the reagent and continuous processing of cationization. Experiments showed that 8.0% (o.w.bath) of the reagent, 1:1 of molar ratio of sodium hydroxide to the reagent, 60 °C and 6 min of baking temperature and time were selected for cationization and the obtained cationic cotton was suitable for application in salt-free reactive dyeing. The structures of both the untreated and cationic fibers were investigated by X-ray diffraction and scanning electronic microscopy. Higher dye utilization and color yields could be realized on the cationic cotton than that on the untreated one in the conventional dyeing. Levelness dyeing and good fastness properties of the dyes on the cationic fabrics were obtained. Besides, colorimetric properties and mechanical strength of the dyed fabrics were both evaluated to show applicability of this preparation process of cationic cotton.  相似文献   

11.
AIMS: This research aims to investigate the efficiency of two lipolytic enzymes--fungal cutinase and yeast esterase--upon the biodegradation of dihexyl phthalate (DHP). METHOD AND RESULTS: During the enzymatic degradation of DHP dissolved in methanol, several degradation products were detected and their time-course changes were monitored using GC/MS. The DHP-degradation rate of cutinase was surprisingly high; i.e. almost 70% of the initial DHP (500 mg l(-1)) was decomposed within 4.5 h. Although the same amount of esterase was employed, more than 85% of the DHP remained after 3 days. Almost all the DHP was converted by cutinase into 1,3-isobenzofurandione (IBF), whereas hexyl methyl phthalate and IBF were abundantly produced by esterase. In addition, the toxicities of the DHP-degraded products by esterase were evaluated using various recombinant bioluminescent bacteria, which caused oxidative and protein damage, whereas the hydrolysis products from cutinase never caused any cellular damage in the methanol-containing reaction system. CONCLUSIONS: Cutinase starts to act as a DHP-degrader much earlier and faster than esterase, with high stability in ester-hydrolytic activity, therefore a plausible approach to the practical application of cutinase for DHP degradation in the DHP-contaminated environments may be possible. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the enhanced degradation and detoxification of DHP using Fusarium oxysporum f. sp. pisi cutinase.  相似文献   

12.
The gene for a novel enzyme having pectate lyase (Pel) and pectin methylesterase (Pme) activities found in the genome of an alkaliphilic Bacillus, KSM-P358, was sequenced. The structural gene contained a long open reading frame of 4314 bp corresponding to a 32-amino-acid signal peptide and a 1406-amino-acid mature enzyme with a molecular mass of 155,666. The mature enzyme contained two uncontiguous regions at amino acids 800–1051 and 1105–1406 exhibiting homology to a Pel from a Bacillus strain with 43.7% and a Pme from Erwinia chrysanthemi with 33.4% identity, respectively. The recombinant enzyme expressed in Bacillus subtilis cells had a molecular mass of 160 kDa and exhibited pH and temperature optima for Pel activity of 10 and 40 °C and those for the Pme activity of 8.5 and 45 °C. The genes for the domains for the Pel and Pme could be separately expressed in Escherichia coli cells, and the catalytic properties of the respective protein fragments were essentially identical to those of the intact enzyme. This novel enzyme is mosaic in that some regions before the two domains exhibited limited but substantial similarity to some regions of carbohydrate-active enzymes. The regions contained parts of a gene for Pels from a Bacillus sp. and Pseudomonas fluorescens, a xylanase from P. fluorescens subsp. cellulosa, a 1,4--mannanase from a Pyromyces sp., a putative Pel from a Streptomyces coelicolor cosmid, a (1,3-1,4)--glucanase from Clostridium thermocellum.  相似文献   

13.
An aqueous two-phase system composed by a thermoseparating random copolymer of ethylene oxide/propylene oxide 50/50 (%w/w), Breox, and hydroxypropyl starch – Reppal PES 100 was evaluated for the partitioning of Fusarium solani pisi recombinant cutinase. The effect of several additives on the partitioning of pure cutinase was evaluated. Micelles of sodium dodecanoate provided a ten-fold increase of the partitioning coefficient (K=9) and recovery yields of 60-75%. The phase diagrams of the systems composed of Breox, Reppal and sodium dodecanoate were determined and it was found that in systems with high surfactant concentrations, the binodal was moved to lower polymer concentrations, enabling a two-phase system with 6% (w/w) of each polymer.  相似文献   

14.
从类芽胞杆菌Paenibacillus sp.WZ008的发酵上清液中纯化得到一个高活力碱性果胶裂解酶,经SDS-PAGE电泳估算其亚基相对分子质量为4.5×104。通过对该酶进行酶学性质研究发现:该酶能催化裂解果胶酸、低酯果胶和高酯果胶;酶催化反应最适温度范围为55~60℃,最适pH为9.6,在最适条件下以低酯果胶为底物酶的比酶活达3 021.6 U/mg;Ca2+能增强该酶的活力,而Mn2+,Ba2+和EDTA强烈抑制该酶活力;当没有Ca2+存在时,高度酯化的果胶是该酶的最适底物,在4 mmol/L Ca2+存在时,该酶以果胶酸为底物比酶活最高(25 467 U/mg)。该酶N端序列比对分析发现与类芽胞杆菌Paenibacillus amylolyticus strain 27c64果胶裂解酶高度同源。  相似文献   

15.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry.  相似文献   

16.
A strain of thermophilic bacterium, Bacillus sp., with pectolytic activity has been isolated. It produced an extracellular endo-polygalacturonate trans-eliminase (PL, EC 4.2.2.1) when grown at 60 degrees C on a medium containing polygalacturonate (PGA). The PL was purified by hydrophobic, cation exchange, and size exclusion column chromatographies. The molecular mass of the enzyme was 50 kDa by SDS-PAGE. The isoelectric point of the enzyme was pH 5.3. The enzyme had a half-life of 13 and 1 h at 65 and 70 degrees C, respectively, and showed optimal activity around at 70 degrees C and pH 8.0. It had protopectinase activity, besides PL activity, on lemon protopectin and cotton fibers. The first 20 amino acids sequence of the enzyme had significant similarity with that of PL from methophilic Bacillus subtilis, with 50% identity.  相似文献   

17.
BT基因棉与常规棉主要害虫及天敌生态位的比较研究   总被引:7,自引:0,他引:7  
本研究了BT基因棉与常规棉主要害虫及天敌的生态位。结果表明:主要害虫及天敌的种类一致,但棉铃虫幼虫的数量差异显;33B棉田各昆虫种群的生态位宽度指数偏高;棉铃虫、棉蚜对主要天敌的生态位重叠指数偏高。应用生态位概念分析了造成区别的原因。  相似文献   

18.
19.
Abstract Plant allocation to defensive compounds by elevated CO2‐grown non‐transgenic and transgenic Bt cotton in response to infestation by cotton aphid, Aphis gossypii (Glover) in open‐top chambers under elevated CO2 were studied. The results showed that significantly lower foliar nitrogen concentration and Bt toxin protein occurred in transgenic Bt cotton with and without cotton aphid infestation under elevated CO2. However, significantly higher carbon/nitrogen ratio, condensed tannin and gossypol were observed in transgenic Bt cotton “GK‐12” and non‐transgenic Bt cotton ‘Simian‐3’ under elevated CO2. The CO2 level and cotton variety significantly influenced the foliar nitrogen, condensed tannin and gossypol concentrations in the plant leaves after feeding by A. gossypii. The interaction between CO2 level × infestation time (24 h, 48 h and 72 h) showed a significant increase in cotton condensed tannin concentrations, while the interaction between CO2 level × cotton variety significantly decreased the true choline esterase (TChE) concentration in the body of A. gossypi. This study exemplified the complexities of predicting how transgenic and non‐transgenic plants will allocate defensive compounds in response to herbivorous insects under differing climatic conditions. Plant defensive compound allocation patterns and aphid enzyme changes observed in this study appear to be broadly applicable across a range of plant and herbivorous insect interactions as CO2 atmosphere rises.  相似文献   

20.
A copy of the cutinase cDNA from Fusarium solani pisi was constructed starting from synthetic oligonucleotides. For this construction three separate cassettes were made, which were subsequently assembled to form the cutinase gene. Heterologous expression of the synthetic cutinase gene and the subsequent secretion of the recombinant enzyme was achieved in Saccharomyces cerevisiae and Aspergillus awamori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号