首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

3.
A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.  相似文献   

4.
BackgroundHonokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases.PurposeThe objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol.Study designHonokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol.MethodsLiterature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords ‘Honokiol’, ‘Health Benefits’ and ‘Therapeutic Insights’ as the keywords for primary searches and secondary search terms were used as follows: ‘Anticancer’, ‘Oxidative Stress’, ‘Neuroprotective’, ‘Antimicrobial’, ‘Cardioprotection’, ‘Hepatoprotective’, ‘Anti-inflammatory’, ‘Arthritis’, ‘Reproductive Disorders’.ResultsThis promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others.ConclusionAll these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.  相似文献   

5.
The activities of acetylcholinesterase (acetylcholine acetyl-hydrolase; EC 3.1.1.7) and catechol-O-methyl transferase (S-adenosylmethionine: catechol-O-methyl transferase; EC 2.1.1 .a) were measured in the various ganglia of the nervous system of Aplysia californica and in some of the individually identifiable neurons in these ganglia. All of the neurons studied had measurable levels of activity for both enzymes. Since different individual neurons exhibited approximately the same level of activity we concluded that neither of these enzymes could be used to classify neurons as ‘cholinergic’ vs. ‘aminergic’ or ‘cholinoceptive’ vs. ‘aminoceptive'. The ubiquitous distribution of either or both of these enzymes in different single neurons may be related to glial contamination.  相似文献   

6.
7.
Abstract

A purification procedure leading to a joint separation of two serum copperenzymes: ceruloplasmin (EC 1.16.3.1) and amineoxidase (EC 1.4.3.6), is described. Both enzymes are obtained in electrophoretically homogeneous form and their specific activities are higher than those obtained by previously described purification techniques. Two common steps: precipitation of bovine plasma proteins with ammonium sulphate (at 35 % and 55 % saturation) followed by column chromatography on AE-Agarose (obtained by treatment of agarose beads with 1-chloro-2-ethylamine), lead to an electrophoretically homogeneous ceruloplasmin. At the same time, the ceruloplasmin-free protein preparation eluted in a first peak, following further Q-Sepharose and Con A-Sepharose chromatography, leads to purified bovine serum amine oxidase (BSAO) with an improved yield. The emphasis was given to a mutual improving effect as a consequence of the integration of the two enzymes purification procedures.  相似文献   

8.
《BBA》1985,808(1):52-65
Excitation-energy-transfer kinetics in isolated phycobilisomes from the cyanobacterium Synechococcus 6301 (Anacystis nidulans) and the mutant AN 112 (rods containing one hexameric C-phycocyanin unit only) was investigated by picosecond absorption and fluorescence techniques. The different chromophores in the phycobilisomes were selectively excited. A lifetime component of about 10 ps was found for both C-phycocyanin and allophycocyanin in both types of phycobilisomes. We assign these signals to a transfer of excitation energy from sensitizing (‘s’) to fluorescing (‘f’) chromophores within C-phycocyanin and allophycocyanin units. A 10 ps component was also observed in the anisotropy relaxation measurements. The anisotropy decay is attributed mainly to differently oriented transition dipole moments of ‘s’- and ‘f’-chromophores and partially to ‘f’ → ‘f’ transfer. An absorption recovery signal of τ ≈ 90 ps at λ ≤ 630 nm in phycobilisomes of Synechococcus 6301 is reduced to 40–50 ps in AN 112 phycobilisomes. This is rationalized in terms of a decreased rod → core transfer time in the shorter rods of AN 112. The 40–50 ps lifetime of fluorescence and absorption recovery in AN 112 phycobilisomes is assigned mainly to a rate-limiting transfer step between C-phycocyanin and the allophycocyanin core. A decay component of allophycocyanin τ ≈ 50 ps was observed both in absorption recovery measurements and in fluorescence decay. It is assigned to energy transfer to the terminal chromophores. The final emitter(s) of the phycobilisomes from AN 112 have fluorescence lifetimes of 1.9 and 1.3 ns. We find a good correlation in the fluorescence kinetics between the decay times of phycocyanin and allophycocyanin and the fluorescence risetimes of the terminal emitters.  相似文献   

9.
Crested wheatgrass (Agropyron cristatum L.) is a cool-season perennial grass, which has demonstrated its potential for use as turfgrass. However, limited information is available on its drought and salinity tolerance. The main purpose of this study was to investigate the changes in the antioxidant defence system and physiological traits of six Iranian crested wheatgrass genotypes under drought and salinity stresses. The experimental design comprised a split plot with water treatments (control well-watered, salinity stress and water stress) as main plots and genotypes as subplots. This study demonstrated the variations in drought and salinity tolerance among crested wheatgrass genotypes. ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ generally performed better than other genotypes under drought and salinity conditions, mainly by maintaining higher activities of antioxidant enzymes like superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and non-enzyme antioxidants like glutathione, higher proline and total non-structural carbohydrates content. The increased, decreased, and unchanged activities of antioxidant enzymes in the crested wheatgrass genotypes indicates a different forms of metabolism of antioxidant enzymes in response to drought and salinity stress. In general, drought and salinity stress increases the malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content; however, ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ genotypes could tolerate an increase in MDA content and H2O2 content; therefore, lower levels of MDA content and H2O2 content were observed. The results showed that increasing levels of diamine oxidase and polyamine oxidase have been associated with increasing drought and salinity tolerance. Based on the biochemical and physiological parameters that were evaluated, we concluded that the genotype ‘ACSKI’ was superior in terms of drought and salinity tolerance. This superiority was mainly a result of better enzymatic and non-enzymatic antioxidant defence system and better osmotic adjustment under stress conditions.  相似文献   

10.
Abstract

The present investigation was carried out with the objectives to understand the effect of paclobutrazol, gibberellic acid and Pseudomonas fluorescens on the enzymatic antioxidants like Ascorbate peroxidase (APX, EC: 1.11.1.11), Superoxide dismutase (SOD, EC: 1.15.1.1), Catalase (CAT, EC: 1.11.1.6), Peroxidase (POX, EC 1.11.1.7) and polyphenol oxidase (PPO, Ec 1.10.3.1) activities of Catharanthus roseus plants under field conditions. 10 mg l?1 paclobutrazol, 5 µM gibberellic acid and 1 mg P. fluorescens concentrations were used for the treatments, and control plants were irrigated with well water. The treatments were given 38, 53, 68 and 83 days after planting (DAP) by soil drenching. The plants were taken randomly 45, 60, 75 and 90 DAP and separated into root, stem, leaves and flowers and used for estimating the antioxidant enzymes. The results showed that these plant growth regulators have significant effects on antioxidant enzymes of C. roseus.  相似文献   

11.
In the paper, the soluble sugar composition and activities of enzymes metabolizing sucrose: invertase (β-fructosidase, EC 3.2.1.26), sucrose synthase (SS; EC 2.4.1.13) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) were investigated during fruit development of two pear species: Pyrus bretschneideri Rehd. cv. ‘Yali’ and P. pyrifolia Nakai cv. ‘Aikansui’, characterized as low and high sucrose types, respectively. It was found that, at the end of fruit development of ‘Aikansui’, the level of sucrose was five times higher than in ‘Yali’ in the same period. It was coincident with the significantly higher activities of SS (synthesis) and SPS and lower activities of invertase (vacuolar and cell wall-bound acid invertase and neutral invertase). The high correlation was found between sucrose level and SS (synthesis) and SPS activities in ‘Aikansui’ pears.  相似文献   

12.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

13.
The enantioselective recognition of ‘remote’ stereogenic centers represents a scientific task in organic chemistry being also of current interest in the pharmaceutical industry. This is due to a range of pharmaceutically relevant molecules or intermediates thereof bearing a stereogenic center, which is separated from the functional group by a larger non-chiral moiety such as, for example, a longer sequence of bonds of at least three carbon or hetero-atoms or by a planar aromatic moiety. Notably, biocatalysis turned out to provide an excellent solution for a range of challenging syntheses in this field. For example, efficient enzymatic resolution processes of racemates with such a ‘remote’ stereogenic center were developed for the synthesis of pelitrexol, lasofoxifene and (S)-monastrol. In general, good yields accompanied by high enantioselectivities were obtained, thus underlining the tremendous potential of enzymes to recognize and enantioselectively transform enantiomers of racemates with ‘remote’ stereogenic centers. Such or similar types of stereoselective recognitions of ‘remote’ stereogenic centers by means of enzymes have been also reported in the field of flavor and vitamin synthesis. Thus, biocatalysis represents a promising solution for the efficient approach to enantiomerically pure complex chiral molecules with stereogenic centers being located apart from the functional group, and it can be expected that enzymatic resolution will be increasingly applied when searching for an efficient and also technically feasible process for also novel complex chiral molecules bearing a ‘remote’ stereogenic center.  相似文献   

14.
15.
Abstract

This work describes an experimental ‘toolbox’ for the rapid evaluation and optimisation of multi-step enzymatic syntheses comprising a ‘mix and match’ E. coli-based expression system and automated microwell scale experimentation. The approach is illustrated with a de novo designed pathway for the synthesis of optically pure amino alcohols using the enzymes transketolase (TK) and transaminase (TAm) to catalyze asymmetric carbon-carbon bond formation and selective chiral amine group addition respectively. The E. coli expression system, based on two compatible plasmids, enables pairs of enzymes from previously engineered and cloned TK and TAm libraries to be evaluated for the sequential conversion of different initial substrates. This is complemented by the microwell experimentation which enables efficient investigation of different biocatalyst forms, use of different amine donors and substrate feeding strategies. Using this experimental ‘toolbox’, one-pot syntheses of the diastereoisomers (2S,3S)-2-aminopentane-1,3-diol (APD) and (2S,3R)-2-amino-1,3,4-butanetriol (ABT) were designed and performed, which gave final product yields of 90% mol/mol for APD and 87% mol/mol for ABT (relative to the initial TK substrates) within 25 hours. For the synthesis of APD, the E coli TK mutant D469E was paired with the TAm from Chromobacterium violaceum 2025 while for ABT synthesis the wild-type E. coli TK exhibited the highest specific activity and ee( enantiomeric excess) of >95%. For both reactions, whole-cell forms of the TK-TAm biocatalyst performed better than cell lysates while isopropylamine (IPA) was a preferable amine donor than methylbenzylamine (MBA) since side reactions with the initial TK substrates were avoided. The available libraries of TK and TAm enzymes and scalable nature of the microwell data suggest this ‘toolbox’ provides an efficient approach to early stage bioconversion process design in the chemical and pharmaceutical sectors.  相似文献   

16.
Two well-established methods to prepare glycogen are available: (1) extraction from natural resources such as shellfish and animal tissues; (2) synthesis from glucose-1-phosphate using two enzymes, α-glucan phosphorylase (EC 2.4.1.1) and branching enzyme (EC 2.4.1.18). We have developed a novel enzymatic process for glycogen production, in which short-chain amylose is first prepared from starch or dextrin by using isoamylase (EC 3.2.1.68), and then branching enzyme and amylomaltase (EC 2.4.1.25) are added to synthesize glycogen. Our enzymatic process, using isoamylase, branching enzyme and amylomaltase, is currently the most efficient for glycogen production. Furthermore, the molecular weight of glycogen is controllable in a range of 3.0×106 to 3.0×107 by adjusting some parameters of the reaction.  相似文献   

17.
Abstract

The increasingly diverse character of London's multicultural landscape has shaped how migrants interact with(in) the different spaces of the city. This process entails both settled and incoming migrants' participation in place-making; a mutual imbrication that might promote the long-settled migrants' evocation of a lost terrain. This article unpacks that process by looking at the Latin American social football scene of South London, specifically a space known as la cancha (the pitch). This was founded by Chilean political refugees during the 1970s and it has incorporated Latin American ‘economic’ migrants and ‘local’ Britons through time. Starting from the evocation of a lost ‘golden age’ of la cancha, the paper unpacks this space's contested, complex and changing nature. It presents diaspora space, community and belonging as lived processes. Through this depiction, the assumptions of homogeneous and isolated migrant communities are challenged, as are the diaspora's nostalgic claims that also emerge from them.  相似文献   

18.
19.
Batch experimental studies were carried out for the ultrasound-assisted extraction of paclitaxel from Taxus chinensis while varying parameters such as ultrasound power, extraction temperature and contact time. The extraction of the majority of the paclitaxel (~99%) was achieved from the biomass by a single extraction at 380W of ultrasound power for a period of 10 min. The kinetics data obtained for the paclitaxel extractions, and the dominant role played by intraparticle diffusion, were found to be in concordance with the pseudo-second-order model, and the intraparticle diffusion model respectively. The effective diffusion coefficient of paclitaxel (4.1882 × 10-13 ~ 5.7093 × 10-13 m2/s) and the mass transfer coefficient (4.705 × 10-8 ~ 14.1160 × 10-8 m/s) increased when the extraction temperature and ultrasound power were raised.  相似文献   

20.
Abstract

We studied multiple sequence alignment (MSA) consensus amino acid distributional patterns in 2844 amino acid sequences of the eight enzymes of the Kreb’s oxidative tricarboxylic acid pathway (oTCA) in Archaea, Bacteria and Eukarya and 5545 sequences of 33 bacteria as geochronologically separated enzymes with MSA consensus site modal identities. The 33 bacteria were 20 presumptive examples of early-oldest (Hadean-Archaean) (‘Epoch I’) or 13 late-newest (contemporary) (‘Epoch III’) appearing enzymes on Earth. The enzyme’s MSA consensus sites were identified by their modal identity, % Occupancy in one of nine-graded evolutionary-conservation zones (CZs) and the Euclidean distance (Å) from each of their consensus MSA Cɑs to the same atom (Anchor-atom) in their reported functional center. These MSA consensus sites are tetrad-data points called recovered-amino acids (RAA). Across Domains, the % Occupancies of the eight-dominant RAAs of the Kreb’s cycle and the 33 bacteria were found to be similarly ranked. Compared to Trifonov’s ‘putative ranked temporal order of the appearance of amino acids on Earth’ (TOAE), the greatest statistical concordance with tetrad-RAAs across Domains were those characterized as within the most-evolutionary conserved conservation zone (CZ9), typically nearest (Å) their enzyme’s catalytic/active center. The geochronologically characterized early-oldest Hadean-Archaean Bacteria ‘Epoch I’ enzymes, compared to late-newest Bacteria enzymes, had greater average numbers of amino acid residues/sequence and a statistically significant larger variability in their RAA compositional-Å3-volumes. The late-newest ‘Epoch III’ enzymes had statistically significant lower volumetric values, specifically, their native Å3-volume, void-volume and volume change on unfolding. Our enzyme data suggest a geochronological trace of ‘metabolism’s progressive emergence’.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号