首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defined by the dimensions of the laser beam as a consequence of the inherent inhomogeneity of the cell. Upon irradiation at a wavelength readily absorbed by PpIX in a one-photon transition, this scattering of light eliminated any advantage accrued to the use of focused irradiation. However, upon irradiation at a longer wavelength where PpIX can only absorb light under non-linear two-photon conditions, meaningful intracellular resolution was achieved in the small spatial domain where the light intensity was high enough for absorption to occur.  相似文献   

2.
《Free radical research》2013,47(9):718-730
Abstract

The response of HeLa cells to subcellular spatially localized two-photon irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. Upon irradiation under these conditions, a localized population of PpIX excited states can be produced with meaningful intracellular spatial resolution; the dimensions of the domain where the incident light flux is high enough for PpIX two-photon absorption are defined by the microscope optics and by the diffraction of light (spot diameter at beam waist of ?0.5–1.0 μm). In turn, the dimensions of the intracellular domain containing cytotoxic PpIX-sensitized singlet oxygen will likewise be confined. Most importantly, cell response (e.g., morphological signs of cell death) correlates with the light dose delivered and the intracellular domain irradiated. Thus, controlling light delivery can complement other techniques used to impart intracellular spatial localization in mechanistic studies of photoinitiated reactive oxygen species. Such controlled light delivery is also expected to be a particularly useful tool to study the so-called bystander effect in which a selectively-perturbed cell can influence a neighboring cell through intercellular signaling mechanisms.  相似文献   

3.
Retinal damage by light: Possible implication of singlet oxygen   总被引:1,自引:0,他引:1  
A new hypothesis is proposed in an attempt to explain the mechanism of the irreversible damage which can be induced in the retina by visible light. Upon illumination, retinal generates singlet oxygen and this reactive species can produce lipid peroxidation which in turn may induce membrane instability.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

4.
The roles played by singlet oxygen (1O2) in photodynamic therapy are not fully understood yet. In particular, the mobility of 1O2 within cells has been a subject of debate for the last two decades. In this work, we report on the kinetics of 1O2 formation, diffusion, and decay in human skin fibroblasts. 1O2 has been photosensitized by two water-soluble porphyrins targeting different subcellular organelles, namely the nucleus and lysosomes, respectively. By recording the time-resolved near-IR phosphorescence of 1O2 and that of its precursor the photosensitizer's triplet state, we find that the kinetics of singlet oxygen formation and decay are strongly dependent on the site of generation. 1O2 photosensitized in the nucleus is able to escape out of the cells while 1O2 photosensitized in the lysosomes is not. Despite showing a lifetime in the microsecond time domain, 1O2 decay is largely governed by interactions with the biomolecules within the organelle where it is produced. This observation may reconcile earlier views that singlet oxygen-induced photodamage is highly localized, while its lifetime is long enough to diffuse over long distances within the cells.  相似文献   

5.
Singlet oxygen generation is reported from (1) enzymatic reaction and (2) electron transfer reactions of the superoxide anion measured directly with an ultrasensitive near-IR emission spectrophotometer by monitoring the O2(1Δg) → O2 (3Σg?) transition at 1268 nm. Near-IR emission spectra from the myeloperoxidase and lactoperoxidase enzymatic systems show only emission of singlet oxygen at 1268nm. The lipoxygenase/Na–linoleate enzymatic reaction exhibits two emissions, 1268 nm and 1288 nm. The latter emission is identified as originating from a peroxy radical. Spectral and kinetic data giving evidence of singlet oxygen generation is obtained from the reaction of potassium superoxide solubilized by 18-crown-6-ether in acetonitrile with a series of organometallic coordination compounds.  相似文献   

6.
A comparative study of fluorescent singlet oxygen probes in plant leaves   总被引:1,自引:0,他引:1  
Four fluorescent singlet oxygen sensors: DanePy, its oxalate salt, Singlet Oxygen Sensor Green and MVP, were infiltrated into tobacco leaves and tested for toxicity, subcellular localization, light sensitivity and capacity to trap the singlet oxygen produced in photoinhibition. For reference, a broad sensitivity free radical probe, TEMPO-9-AC, was also included. Photochemical yield was approximately 15% and 10% inhibited by Singlet Oxygen Sensor Green and MVP, respectively, but was not significantly affected by the other probes. Under photoinhibitory conditions, brought about by irradiating lincomycin-treated leaves with strong photosynthetically active radiation, DanePy and Singlet Oxygen Sensor Green were responsive. Singlet Oxygen Sensor Green was also reactive to low, non-photoinhibitory light exposure of the leaf, which was not characteristic to the other probes. MVP did not respond to singlet oxygen which can partly be explained by a possible attenuation of its blue emission in the leaf, as shown by the example TEMPO-9-AC. DanePy-oxalate did not respond to photosynthetic singlet oxygen due to lack of its penetration into photosynthetic tissue and hence could be useful in detecting any singlet oxygen which escapes from a chloroplast initiation site. DanePy was localized in the chloroplasts, while Singlet Oxygen Sensor Green was mainly found in the epidermal cells preferentially associated with the nucleus.   相似文献   

7.
Prion disorders are fatal neurodegenerative diseases caused by the autocatalytic conversion of a natively occurring prion protein (PrPC) into its misfolded infectious form (PrPTSE). The proven resistance of PrPTSE to common disinfection procedures increases the risk of prion transmission in medical settings. Herein, we present the effective photodynamic inactivation (PDI) of prions by disulfonated hydroxyaluminum phthalocyanine (AlPcOH(SO3)2) utilizing two custom‐built red light sources. The treatment eliminates PrPTSE signal in infectious mouse brain homogenate with efficiency that depends on light intensity but has a low effect on the overall protein content. Importantly, singlet oxygen (O2(1Δg)) is the only species significantly photogenerated by AlPcOH(SO3)2, and it is responsible for the PDI of prions. More intensive light conditions show not only higher O2(1Δg) production but also decreases in AlPcOH(SO3)2 photostability. Our findings suggest that PDI by AlPcOH(SO3)2‐generated O2(1Δg) represents a promising approach for prion inactivation that may be useful in future decontamination strategies for delicate medical tools.  相似文献   

8.
A predictive software system, SOSUI-GramN, was developed for assessing the subcellular localization of proteins in Gram-negative bacteria. The system does not require the sequence homology data of any known sequences; instead, it uses only physicochemical parameters of the N- and C-terminal signal sequences, and the total sequence. The precision of the prediction system for subcellular localization to extracellular, outer membrane, periplasm, inner membrane and cytoplasmic medium was 92.3%, 89.4%, 86.4%, 97.5% and 93.5%, respectively, with corresponding recall rates of 70.3%, 87.5%, 76.0%, 97.5% and 88.4%, respectively. The overall performance for precision and recall obtained using this method was 92.9% and 86.7%, respectively. The comparison of performance of SOSUI-GramN with that of other methods showed the performance of prediction for extracellular proteins, as well as inner and outer membrane proteins, was either superior or equivalent to that obtained with other systems. SOSUI-GramN particularly improved the accuracy for predictions of extracellular proteins which is an area of weakness common to the other methods.  相似文献   

9.
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs.  相似文献   

10.
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen (1O2). Irradiation of hair shafts (λex > 400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by 1H NMR. After 532-nm excitation, all hair shafts presented the characteristic 1O2 emission (λem = 1270 nm), whose intensity varied inversely with the melanin content. 1O2 lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a 1O2 suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for 1O2 in the solvents in which the hair shafts were suspended, indicating that 1O2 is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress 1O2, with similar efficiencies. The higher amount of 1O2 generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of 1O2 in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin.  相似文献   

11.
High light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II and causes photooxidative stress. In Chlamydomonas reinhardtii, singlet oxygen also induces the expression of the nuclear-encoded glutathione peroxidase homologous gene GPXH. We provide evidence that singlet oxygen stimulates GPXH expression by activating a signaling mechanism outside the thylakoid membrane. Singlet oxygen from photosystem II could be detected with specific probes in the aqueous phase of isolated thylakoid suspensions and the cytoplasm of high light stressed cells. This indicates that singlet oxygen can stimulate a response farther from its production site than generally believed.  相似文献   

12.
For many biological and biomedical studies, it is essential to detect the production of 1O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP+ radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies.  相似文献   

13.
An effect of β-carotene and its polar derivative, zeaxanthin, on a concentration of singlet oxygen in lipid membranes was studied in a model system. The carotenoids were incorporated into the membranes of small unilamellar liposomes at a concentration of 0.15 mol% with respect to lipid. Singlet oxygen was generated in a liposome suspension via photosensitization of toluidine blue, and its concentration in a membrane was detected with application of a specific fluorescence probe (singlet oxygen sensor green reagent) located in the lipid bilayer. The results show the carotenoid-dependent decrease in the concentration of singlet oxygen in the membranes formed with unsaturated lipids (egg yolk phosphatidylcholine and digalactosyldiacylglycerol) but not in the case of the membranes formed with a saturated lipid (dimyristoylphosphatidylcholine). The effect of carotenoids was about twice as high as in the case of cholesterol present in liposomes at the same concentration. The results suggest that carotenoids protect membranes formed with unsaturated lipids against singlet oxygen through combined activity of different mechanisms: modification of structural properties of the lipid bilayers, physical quenching of singlet oxygen and chemical reactions leading to the pigment oxidation. The latter conclusion is based on the analysis of the absorption spectra of liposomes before and after light exposure. An importance of the different modes of protection by carotenoids against single oxygen toxicity towards biomembranes is discussed.  相似文献   

14.
Vargas WA  Pontis HG  Salerno GL 《Planta》2008,227(4):795-807
The presence of sucrose (Suc) in plastids was questioned for several decades. Although it was reported some decades ago, neither Suc transporters nor Suc metabolizing enzymes were demonstrated to be active in those organelles. By biochemical, immunological, molecular and genetic approaches we show that alkaline/neutral invertases (A/N-Invs) are also localized in chloroplasts of spinach and Arabidopsis. A/N-Inv activity and polypeptide content were shown in protein extracts from intact chloroplasts. Moreover, we functionally characterized the Arabidopsis At-A/N-InvE gene coding for a chloroplast-targeted A/N-Inv. The At-A/N-InvE knockout plants displayed a lower total A/N-Inv activity in comparison with wild-type plants. Furthermore, neither A/N-Inv activity nor A/N-Inv polypeptides were detected in protein extracts prepared from chloroplasts of mutant plants. Also, the measurement of carbohydrate content, in leaves harvested either at the end of the day or at the end of the night period, revealed that the knockout plants showed a decrease in starch accumulation but no alteration in Suc levels. These are the first results demonstrating the presence of a functional A/N-Inv inside chloroplasts and its relation with carbon storage in Arabidopsis leaves. Taken together our data and recent reports, we conclude that the participation of A/N-Invs in the carbon flux between the cytosol and the plastids may be a general phenomenon in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Oxygen radical scavengers have been shown to prevent the development of ischemic preconditioning, suggesting that reactive oxygen species (ROS) might be involved in this phenomenon. In the present study, we have investigated whether direct exposure to ROS produced by photoactivated Rose Bengal (RB) could mimic the protective effects of ischemic preconditioning.

Methods In vitro generation of ROS from photoactivated RB in a physiological buffer was first characterised by ESR spectroscopy in the presence of 2,2,6,6-tetramethyl-1-piperidone (oxoTEMP) or 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In a second part of the study, isolated rat hearts were exposed for 2.5 min to photoactivated RB. After 5 min washout, hearts underwent 30 min no-flow normothermic ischemia followed by 30 min of reperfusion.

Results and Conclusions The production of singlet oxygen (1O2) by photoactivated RB in the perfusion medium was evidenced by the ESR detection of the nitroxyl radical oxoTEMPO. Histidine completely inhibited oxoTEMPO formation. In addition, the use of DMPO has indicated that (i) superoxide anions (O·-2) are produced directly and (ii) hydroxyl radicals (HO·) are formed indirectly from the successive O·-2 dismutation and the Fenton reaction. In the perfusion experiments, myocardial post-ischemic recovery was dramatically impaired in hearts previously exposed to the ROS produced by RB photoactivation (1O2, O·-2, H2O2 and HO·) as well as when 1O2 was removed by histidine (50 mM) addition. However, functional recovery was significantly improved when hearts were exposed to photoactivated RB in presence of superoxide dismutase (105 IU/L) and catalase (106 IU/L).

Further studies are now required to determine whether the cardioprotective effects of Rose Bengal in presence of O·-2 and H2O2 scavengers are due to singlet oxygen or to other species produced by Rose Bengal degradation.  相似文献   

16.
Summary Guinea pig glomeruli were grown for 22 d in a serum-free medium composed of Waymouth's MB 752/1 supplemented with sodium pyruvate, nonessential amino acids, and antibiotics (the basic medium). Intracellular cellular activity of the antioxidant enzymes superoxide dismutase (SOD; both copper-zinc [Cu,Zn] and manganese [Mn] forms) and catalase, and intracellular active oxygen metabolites (hydrogen peroxide [H2O2] and superoxide [O2 · ]) were measured with time in culture. The results were compared to results obtained from glomeruli grown in different serum-free media, including the basic medium plus fibronectin (FN), the basic medium plus transferrin and FN, and a complex medium containing insulin, transferrin, selenium (Se), triiodothyronine, and FN (complete medium). In general, although the intracellular activity of antioxidant enzymes and active oxygen metabolites varied over time in culture in all media, there were only a few statistically significant differences among different media. Both CuZn SOD and Mn SOD activity were demonstrated, in isolated glomeruli. The CuZn SOD activity per DNA ratio decreased slightly with time in culture in all media tested except the complete medium, in which CuZn SOD activity per DNA ratio remained more constant. The Mn SOD activity per DNA ratio did not vary significantly over time in culture. Catalaselike activity was very low in isolated glomeruli and declined sharply with time in culture in all media except the complete medium. Both H2O2 and O2 · were detected intracellularly in glomerular culture. Our results indicate that intracellular antioxidant enzymes and active oxygen metabolites in glomeruli vary with time in culture and, in some instances, with culture conditions. Supported by grants to Dr. Terry Oberley from the University of Wisconsin Graduate School and by the Veterans Administration. Mr. Steinert was a predoctoral fellow supported by National Institutes of Health training grant 5-T32 ES0715.  相似文献   

17.
Singlet oxygen (1O2) is a by‐product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1O2‐overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1O2 signalling pathway involves the endoplasmic reticulum (ER)‐mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR‐inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light‐induced cell death. Conversely, light acclimation of ch1 to 1O2 stress put a limitation in the high light‐induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1O2 induces the ER‐mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1O2, and a strong activation of the whole UPR is associated with cell death.  相似文献   

18.
A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions -81 to -149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced.  相似文献   

19.
The photogenotoxicity mechanism of quinolone antibiotics was investigated by measuring oxidative DNA damage in lomefloxacin- and UVA-exposed cultured liver-derived cells. The combination of lomefloxacin and UVA irradiation produced a dose-dependent increase in 7,8-dihydro-8-oxo-2-deoxyguanosine (8-oxo-dG) in cell DNA. This DNA damage was substantially inhibited by co-incubation with sodium azide (NaN3) or 2,2,6,6-tetramethyl-4-piperadone (TMP), chemicals that specifically quench singlet oxygen. No significant reduction of 8-oxo-dG formation was produced by N-t-butyl--phenylnitrone (TBP) or -tocopherol, which primarily scavenge hydroxyl radicals. We conclude that the photodynamic generation of 8-oxo-dG by quinolones is mediated, at least in part, by singlet oxgen.  相似文献   

20.
Superoxide dismutase was found to partially inhibit both chemiluminescence and nitroblue tetrazolium (NBT) reduction from intact human polymorphonuclear leukocytes. This capacity to reduce NBT was lost when the polymorphonuclear leukocytes were sonicated, but could be regained if exogenous NADPH (or NADH) was added to the system. Superoxide dismutase was found to inhibit this NADPH- and NADH-dependent NBT reduction. A mechanism is proposed that relates superoxide anion generation to the univalent reduction of O2 by the activated NADPH (and NADH) oxidase. The relationship of superoxide anion production to NBT reduction, singlet molecular oxygen generation, and chemiluminescence is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号