首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract This study examined the effects of (-)schisandrin B [(-)Sch B] on MAPK and Nrf2 activation and the subsequent induction of glutathione antioxidant response and cytoprotection against apoptosis in AML12 hepatocytes. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitors and Nrf2 RNAi, were used to delineate the signalling pathway. (-)Sch B caused a time-dependent activation of MAPK in AML12 cells, particularly the ERK1/2. The MAPK activation was followed by an enhancement in Nrf2 nuclear translocation and the eliciting of a glutathione antioxidant response. Reactive oxygen species arising from a CYP-catalysed reaction with (-)Sch B seemed to be causally related to the activation of MAPK and Nrf2. ERK inhibition by U0126 or Nrf2 suppression by Nrf2 RNAi transfection almost completely abrogated the cytoprotection against menadione-induced apoptosis in (-)Sch B-pre-treated cells. (-)Sch B pre-treatment potentiated the menadione-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against carbon tetrachloride-hepatotoxicity in an in vivo mouse model. In conclusion, (-)Sch B triggers a redox-sensitive ERK/Nrf2 signalling, which then elicits a cellular glutathione antioxidant response and protects against oxidant-induced apoptosis in AML12 cells.  相似文献   

2.
This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.  相似文献   

3.
Sch B (schisandrin B), the most abundant dibenzocyclooctadiene lignan in Fructus schisandrae, can induce glutathione antioxidant and heat shock responses, as well as protect against oxidant-induced injury in various tissues, including the liver in rodents and AML12 (alpha mouse liver 12) hepatocytes. (-)Sch B is the most potent stereoisomer of Sch B in its cytoprotective action on AML12 hepatocytes. To define the role of ROS (reactive oxygen species) arising from CYP (cytochrome P450)-catalysed metabolism of (-)Sch B in triggering glutathione antioxidant and heat shock responses, the effects of a CYP inhibitor [ABT (aminobenzotriazole)] and antioxidants [DMTU (dimethylthiouracil) and TRX (trolox)] on (-)Sch B-induced ROS production and associated increases in cellular GSH level, as well as Hsp25/70 (heat-shock protein 25/70) production, were investigated in AML12 hepatocytes. The results indicated that (-)Sch B causes a dose dependent and sustained increase in ROS production over 6 h in AML12 hepatocytes, which was completely suppressed by pre-/co-treatment with ABT or DTMU/TRX. Incubation with (-)Sch B for 6 h caused optimal and dose-dependent increases in cellular GSH level and Hsp25/70 production at 16 h post-drug exposure in AML12 hepatocytes. These cellular responses were associated with protection against menadione-induced apoptosis. Pre-/co-treatment with ABT or antioxidants completely abrogated the (-)Sch B-induced glutathione antioxidant and heat shock responses, as well as protection against menadione-induced apoptosis. Experimental evidence obtained thus far supports the causal role of ROS arising from the CYP-catalysed metabolism of (-)Sch B in eliciting glutathione antioxidant and heat shock responses in AML12 hepatocytes.  相似文献   

4.
Chiu PY  Leung HY  Leong PK  Chen N  Zhou L  Zuo Z  Lam PY  Ko KM 《Phytomedicine》2012,19(2):99-110
Danshen-Gegen (DG) Decoction, an herbal formulation containing Radix Salviae miltiorrhizae and Radix Puerariae lobatae, has been used for the treatment of coronary artery disease in Chinese medicine. In the present study, the involvement of ERK- and PKC?-mediated pathways in the cytoprotection against apoptosis afforded by DG pretreatment was investigated in H9c2 cardiomyocytes. Pretreatment with a methanol extract of aqueous DG decoction protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes. The cytoprotection was associated the enhancement of cellular reduced glutathione and a reduced sensitivity to Ca2+-induced mitochondrial permeability transition. DG extract increased the production of cytochrome P-450 (CYP)-dependent reactive oxygen species (ROS) in H9c2 cardiomyocytes, which was accompanied by the concomitant activation of ERK1/2 and PKC?. The DG-induced ERK1/2 activation was followed by the translocation of Nrf2 from the cytosol to the mitochondria accompanied by an increase in the expression of glutathione-related antioxidant proteins. In addition, the increased expression of hemeoxygenase-1 was associated with the activation of Akt and BAD, indicative of anti-apoptotic activity. In conclusion, DG treatment activated both ERK/Nrf2 and PKC? pathways, presumably by ROS arising from CYP-catalyzed processes, with resultant inhibition of hypoxia/reoxygenation-induced apoptosis immediately after DG treatment or even after an extended time interval following DG treatment.  相似文献   

5.
Tert-butylhydroperoxide (tBHP) challenge caused an initial depletion of cellular reduced glutathione (GSH), which was followed by a gradual restoration of cellular GSH in AML12, H9c2, and differentiated PC12 cells. The time-dependent changes in cellular GSH induced by tBHP were monitored as a measure of GSH recovery capacity (GRC), of which glutathione reductase (GR)-mediated glutathione redox cycling and γ-glutamate cysteine ligase (GCL)-mediated GSH synthesis were found to play an essential role. While glutathione redox cycling sustained the GSH level during the initial tBHP-induced depletion, GSH synthesis restores the GSH level thereafter. The effects of (-)schisandrin B [(-)Sch B] and its analogs (Sch A and Sch C) on GRC were also examined in the cells. (-)Sch B and Sch C, but not Sch A, ameliorated the extent of tBHP-induced GSH depletion, indicative of enhanced glutathione redox cycling. However, the degree of restoration of GSH post-tBHP challenge was not affected or even decreased. Pretreatment with (-)Sch B and Sch C, but not Sch A, protected against oxidant injury in the cells. The (-)Sch B afforded cytoprotection was abolished by N,N'-bis(chloroethyl)-N-nitrosourea pretreatment suggesting the enhancement of glutathione redox cycling is crucially involved in the cytoprotection afforded by (-)Sch B against oxidative stress-induced cell injury.  相似文献   

6.
To define the relative role of reduced glutathione (GSH) synthesis and regeneration in schisandrin B (Sch B)-induced increase in cellular GSH level and the associated cytoprotection against oxidative challenge, the effects of L-buthionine-[S,R]-sulfoximine (BSO, a specific inhibitor of gamma-glutamate cysteine ligase (GCL)) and 1,3-bis(2-chloroethyl)-1-nitrourea (BCNU, a specific inhibitor of glutathione reductase (GR)) treatments or their combined treatment were examined in control and Sch B-treated AML12 and H9c2 cells, without and/or with menadione intoxication. Both BSO and BCNU treatments reduced cellular GSH level in AML12 and H9c2 cells, with the effect of BSO being more prominent. The GSH-enhancing effect of Sch B was also suppressed by BSO and BCNU treatments, with the effect of the combined treatment with BSO and BCNU being semi-additive. While Sch B treatment increased the GR but not GCL activity in AML12 and H9c2 cells, it increased the cellular cysteine level. BSO treatment also suppressed the Sch B-induced increase in GR activity. BSO or BCNU treatment per se did not cause any detectable cytotoxic effect, as assessed by lactate dehydrogenase leakage, but the combined treatment with BSO and BCNU was cytotoxic, particularly in H9c2 cells. The cytotoxic effect of BSO and BCNU became more apparent following the menadione challenge. The cytoprotection afforded by Sch B pretreatment was partly suppressed by BSO or BCNU treatment, or completely abrogated by the combined treatment with BSO and BCNU. In conclusion, the results indicate that the cytoprotective action of Sch B is causally related to the increase in cellular GSH level, which is likely mediated by the enhancement of GSH synthesis and regeneration.  相似文献   

7.
Females live longer than males. Oestrogens protect females against aging by up-regulating the expression of antioxidant, longevity-related genes such as glutathione peroxidase (GPx) and Mn-superoxide dismutase (Mn-SOD). The mechanism through which oestrogens up-regulate those enzymes remains unidentified, but may have implications for gender differences in lifespan. We show that physiological concentrations of oestradiol act through oestrogen receptors to reduce peroxide levels in MCF-7 cells (a mammary gland tumour cell line). Oestradiol increases MAP kinase (MAPK) activation as indicated by ERK1 and ERK2 phosphorylation in MCF-7 cells, which in turn activates the nuclear factor kappa B (NFkappaB) signalling pathways as indicated by an increase in the p50 subunit of NFkappaB in nuclear extracts. Blockade of MAPK and NFkappaB signalling reduces the antioxidant effect of oestradiol. Finally, we show that activation of MAPK and NFkappaB by oestrogens drives the expression of the antioxidant enzymes Mn-SOD and GPx. We conclude that oestradiol sequentially activates MAPK and NFkappaB following receptor activation to up-regulate the expression of antioxidant enzymes, providing a cogent explanation for the antioxidant properties of oestrogen and its effects on longevity-related genes.  相似文献   

8.
9.
Chemical modification of chitosan is a promising method for the improvement of biological activity. In this study, chitosan-caffeic acid (CCA) was prepared and its in vitro hepatoprotective ability against hydrogen peroxide-induced hepatic damage in liver cells was evaluated. Treatment with CCA (50–400 µg/mL) did not show cytotoxicity and also significantly (p < 0.05) recovered cell viability against 650 µM hydrogen peroxide-induced hepatotoxicity. CCA treatment attenuated reactive oxygen species generation and lipid peroxidation in addition to increasing cellular glutathione level in cultured hepatocytes. To validate the underlying mechanism, antioxidant and phase II detoxifying enzyme expressions, which are mediated by NF-E2-related factor 2 (Nrf2) activation, were analyzed and CCA treatment was found to increase the expression of superoxide dismutase-1 (SOD-1), glutathione reductase (GR), heme oxygenase-1 (HO-1), and NAD(P)H:quinine oxidoreductase 1 (NQO1). CCA treatment resulted in increased Nrf2 nuclear translocation. The phosphorylation of extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by CCA treatment contributed to Nrf2 activation. Pharmacological blockade of ERK, JNK, and p38 MAPK revealed that SP600125 (JNK inhibitor) and PD98059 (ERK inhibitor) treatment reduced Nrf2 translocation into the nucleus while SB203580 (p38 inhibitor) exhibited weak inhibition. Collectively, CCA protects liver cells against hydrogen peroxide-induced injury and this ability is attributed to the induction of antioxidants and phase II detoxifying enzymes that are mediated by Nrf2 translocation via JNK/ERK signaling.  相似文献   

10.
11.
12.
Chiu PY  Luk KF  Leung HY  Ng KM  Ko KM 《Life sciences》2008,82(21-22):1092-1101
The effects of schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in H9c2 cardiomyocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transition (MPT), and mitochondrial membrane potential (Deltapsi(m)) values, were examined in (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch and (-)Sch B (2.5-5.0 microM) pretreatments protected against hypoxia/reoxygenation-induced apoptosis of H9c2 cells in a concentration-dependent manner, with (-)Sch B being more potent. The degrees of protection decreased, however, at the higher drug concentrations of 7.5 microM in both (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells. The anti-apoptotic effects of the drugs were further evidenced by the suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and the subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase after (-)Sch B pretreatment. Both (+/-)gamma-Sch and (-)Sch B pretreatments increased GSH levels in H9c2 cells, with (-)Sch B being more potent. Hypoxia/reoxygenation challenge caused a depletion in cellular GSH and the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B was associated with enhancement of cellular GSH in H9c2 cells, as compared to the drug-unpretreated control. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening and decreased Deltapsi(m) in H9c2 cardiomyocytes, cytoprotection against hypoxia/reoxygenation-induced apoptosis afforded by (+/-)gamma-Sch/(-)Sch B pretreatments was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, as compared to the respective drug-unpretreated controls. The degrees of protection against apoptosis correlated negatively with the extents of Ca(2+)-induced MPT (r=-0.615, P<0.01) and positively with the values of Deltapsi(m) (r=0.703, P<0.01) in (+/-)gamma-Sch/(-)Sch B-pretreated and hypoxia/reoxygenation challenged cells. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in cellular sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.  相似文献   

13.
14.
Huntington's disease (HD) is characterized by the dysfunction of mitochondrial energy metabolism, which is associated with the functional impairment of succinate dehydrogenase (mitochondrial complex II), and pyruvate dehydrogenase (PDH). Treatment with 3-nitropropionic acid (3-NP), a potent irreversible inhibitor of succinate dehydrogenase, replicates most of the pathophysiological features of HD. In the present study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on 3-NP-induced cell injury in rat differentiated neuronal PC12 cells. The 3-NP caused cell necrosis, as assessed by lactate dehydrogenase (LDH) leakage, and mitochondrion-dependent cell apoptosis, as assessed by caspase-3 and caspase-9 activation, in differentiated PC12 cells. The cytotoxicity induced by 3-NP was associated with a depletion of cellular reduced glutathione (GSH) as well as the activation of redox-sensitive c-Jun N-terminal kinase (JNK) pathway and the inhibition of PDH. (-)Sch B pretreatment (5 and 15 μM) significantly reduced the extent of necrotic and apoptotic cell death in 3-NP-challenged cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with the attenuation of 3-NP-induced GSH depletion as well as JNK activation and PDH inhibition. (-)Sch B pretreatment enhanced cellular glutathione redox status and ameliorated the 3-NP-induced cellular energy crisis, presumably by suppressing the activated JNK-mediated PDH inhibition, thereby protecting against necrotic and apoptotic cell death in differentiated PC12 cells.  相似文献   

15.
The novel small molecule ingenol 3-angelate (PEP005) has been shown previously to induce apoptosis in leukaemic cell lines and primary AML cells, an effect that requires the expression of protein kinase C-delta (PKCδ). Here we have investigated signalling events downstream of PKCδ that determine sensitivity of AML cells to PEP005. We show that activation of ERK1/2 MAP kinase occurred in both sensitive and resistant cells and that induction of apoptosis required sustained signalling through the ERK1/2 pathway. Inhibition of ERK1/2 signalling using the MEK inhibitor PD98059 inhibited PEP005-induced apoptosis and activation of ERK1/2 was shown to occur downstream of PKC activation. The data show that PEP005-induced apoptosis is both PKC and ERK1/2 dependent and indicate that chronic activation of ERK1/2 in leukaemic cells delivers a pro-apoptotic rather than a proliferative or survival signal.  相似文献   

16.
Using an ex vivo model of isolated–perfused rat hearts and cultured H9c2 cells, the structure–activity relationships of schisandrin B (Sch B), and analogs lacking either the methylendioxy group or cyclooctadiene ring, schisandrin A (Sch A) and dimethyl diphenyl bicarboxylate (DDB), respectively, were investigated. Pretreatment with Sch B, but not with Sch A or DDB, protected against myocardial ischemia–reperfusion (I-R) injury in rats. Although Sch B pretreatment largely prevented H9c2 cells from menadione-induced cytotoxicity, Sch A pretreatment produced only a marginal protection. However, DDB pretreatment did not cause any detectable effect. The myocardial and cellular protection afforded by Sch B pretreatment correlated with increases in mitochondrial ATP generation capacity and/or reduced glutathione level as well as heat shock protein (Hsp)25/70 expression, under both control and oxidative stress conditions. The results indicate that the methylenedioxy group and the cyclooctadiene ring are important structural determinants of Sch B in enhancing mitochondrial functional ability and glutathione status, as well as tissue Hsp25/70 expression, thereby protecting the myocardium against I-R injury.  相似文献   

17.
Fisetin is a natural flavonoid from fruits and vegetables that exhibits antioxidant, neurotrophic, anti-inflammatory, and anti-cancer effects in various disease models. Up-regulation of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell death, and therefore, plays a crucial role in cytoprotection in a variety of pathological models. In the present study, we investigated the effect of fisetin on the up-regulation of HO-1 in human umbilical vein endothelial cells (HUVECs). Small interfering RNA and pharmacological inhibitors of PKC-δ and p38 MAPK attenuated HO-1 induction in fisetin-stimulated HUVECs. Fisetin treatment resulted in significantly increased NF-E2-related factor 2 (Nrf2) nuclear translocation, and antioxidant response element (ARE)-luciferase activity, leading to up-regulation of HO-1 expression. In addition, fisetin pretreatment reduced hydrogen peroxide (H(2)O(2))-induced cell death, and this effect was reversed by ZnPP, an inhibitor of HO-1. In summary, these findings suggest that induction of HO-1 expression via Nrf2 activation may contribute to the cytoprotection exerted by fisetin against H(2)O(2) -induced oxidative stress in HUVECs.  相似文献   

18.
To identify key proteins involved in the hepatoprotection afforded by schisandrin B (Sch B), we used a proteomic approach to screen proteins that were specifically regulated by Sch B in mouse livers and to investigate the role of the proteins in hepatoprotection. Thirteen proteins were specifically activated or suppressed by Sch B treatment. Among the 13 proteins, Raf kinase inhibitor protein (RKIP) was postulated to be the key regulator involved in the development of hepatotoxin-induced cellular damage. The results indicated that the downregulation of RKIP by antisense RKIP vector transfection led to the activation of the Raf-1/MEK/ERK signaling pathway, as evidenced by increases in the level of MEK/ERK phosphorylation and the level of nuclear factor erythroid 2-related factor 2 in the nucleus. The signaling effect produced by RKIP downregulation resembled that triggered by Sch B, wherein both treatments resulted in a decrease in the extent of carbon tetrachloride-induced apoptotic cell death in AML12 hepatocytes. Overexpression of RKIP by the sense RKIP transfection vector or the inhibition of MEK kinase by PD98059 was able to abrogate the cytoprotective effect of Sch B in the hepatocytes. The results indicate that Sch B triggers the Raf/MEK/ERK signaling pathway, presumably by downregulating RKIP, thereby protecting against carbon tetrachloride-induced cytotoxicity.  相似文献   

19.
NF-E2相关因子2(nuclear erythroid 2-related factor 2,Nrf2)是一种能调节肝脏中大量解毒和抗氧化防御基因表达的重要转录因子.氧化应激与各种形式的肝损伤有密切的关系.Nrf2由亲电体压力或氧化应激激活,并通过结合抗氧化反应元件(antioxidant response element,ARE)诱导其靶基因,从而对细胞产生保护作用.因此,Nrf2通路在肝脏疾病中的作用已被深入研究.多种动物模型研究结果表明,Nrf2通路通过靶基因表达,在对抗病毒性肝炎、药物性肝损伤、酒精性肝病、非酒精性脂肪肝及肝癌方面表现出了不同的生物功能.根据Nrf2及其信号通路在对抗肝损伤中产生保护作用的相关文献,本文综述并讨论了其作为治疗肝损伤的药物作用靶点方面可能的应用前景.  相似文献   

20.
(?)-Epigallocatechin gallate (EGCG) has recently been shown to exert neuroprotection in a variety of neurological diseases; however, its role and the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the potential neuroprotective effects of EGCG and the possible role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in the putative neuroprotection against experimental stroke in rats. The results revealed that EGCG exhibit significant neuroprotection, as evidenced by reduced infarction size and the decrease in transferase dUTP nick end labeling-positive neurons. Furthermore, EGCG also enhanced levels of Nrf2 and its downstream ARE pathway genes such as heme oxygenase-1, glutamate-cysteine ligase modulatory subunit and glutamate-cysteine ligase regulatory subunit, as compared to control groups. In accordance with its induction of Nrf2 activation, EGCG exerted a robust attenuation of reactive oxygen species generation and an increase in glutathione content in ischemic cortex. Taken together, these results demonstrated that EGCG exerted significant antioxidant and neuroprotective effects following focal cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号