首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of six flavonoids viz., apigenin, genistein, morin, naringin, pelargonidin and quercetin on the susceptibility of low-density lipoprotein (LDL) to oxidative modification were investigated. Flavonoids were added to plasma and incubated for 3 hr at 37 degrees C, and the LDL fraction was separated by ultracentrifugation. Oxidizability of LDL was estimated by measuring conjugated diene (CD), lipid peroxides and thiobarbituric acid-reactive substances (TBARS), after cupric sulfate solution was added. Quercetin and morin significantly (P<0.01 by ANOVA) prolonged the lag time before initiation of oxidation reaction in dose-dependent manner. They also suppressed the formation of lipid peroxides and TBARS more markedly than other flavonoids. The ability to prolong lag time and suppression of lipid peroxides and TBARS formation was in the following order: quercetin >morin >pelargonidin >genistein >naringin >apigenin. LDL exposed to flavonoids reduced oxidizability. These findings suggest that flavonoids may have a role in ameliorating atherosclerosis.  相似文献   

2.
Radical reaction of low-density lipoprotein (LDL) is a key step in atherogenesis and causes both a decrease in the sialic acid moiety and modification of apolipoprotein B-100 (apoB). Although apoB modification (cross-link and fragmentation) increases in atherosclerosis, the change in apoB-bound sialic acid in atherosclerosis is controversial. To elucidate the physiological implications of desialylation of LDL by radical reaction, the reactivity of sialic acid of LDL was compared with that of apoB, which underwent facile fragmentation in radical reactions. ApoB was determined by immunoblot analysis with anti-apoB antiserum, and the sialic acid moiety was measured by blot analysis with a biotin-bound lectin [biotin-SSA from Japanese elderberry (Sambucus sieboldiana)] specific to sialic acid. When human LDL was oxidized with Cu(2+) at 37 degrees C, apoB and apoB-attached sialic acid decreased simultaneously. Comparison of the staining bands with anti-apoB and with biotin-SSA shows that sialic acid moieties still remain on fragmented apoB proteins, indicating that the decrease in sialic acid is much slower than that of apoB fragmentation. In addition, human plasma was oxidized with 400 microM of Cu(2+) at 37 degrees C. Similar analysis indicates that the decrease in sialic acid attached to apoB also results from the fragmentation of apoB. This study indicates that the fragmentation of apoB proceeds at a much faster rate than the decrease in sialic acid content when a free radical reaction is induced in isolated LDL as well as in plasma LDL exposed to Cu(2+)-induced oxidative stress. On the basis of these results, the modification of apoB is much more sensitive than the decrease in sialic acid as an indicator of oxidative stress.  相似文献   

3.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds on the susceptibility of low-density lipoprotein (LDL) to oxidative modification. In this study, six flavonoids, "apigenin, genistein, morin, naringin, pelargonidin and quercetin", were added to plasma and incubated for 3h at 37 degrees C. Then, the LDL fraction was separated by ultracentrifugation. The oxidizability of LDL was estimated by measuring conjugated diene (CD), lipid peroxides and thiobarbituric acid-reactive substances (TBARS) after cupric sulfate solution was added. We showed that among flavonoids used, quercetin and morin significantly (P<0.01 by ANOVA) and dose-dependently prolonged the lag time before initiation of oxidation reaction. Also, these two flavonoids suppressed the formation of lipid peroxides and TBARS more markedly than others. Their ability to prolong lag time and suppression of lipid peroxides and TBARS formation resulted to be in the following order: quercetin>morin>pelargonidin>genistein>naringin>apigenin. LDL exposed to flavonoids in vitro reduced oxidizability. These findings show that flavonoids may have a role in ameliorating atherosclerosis.  相似文献   

4.
To investigate whether resveratrol, a polyphenolic compound in red wine, affects the oxidation of human low density lipoprotein (LDL), LDL purified from normolipidemic subjects was subjected to Cu(2+)-induce and azo compound-initiated oxidative modification, with and without the addition of varying concentrations of resveratrol. Modification of LDL was assessed by the formation of thiobarbituric acid reactive substances (TBARS) and changes in the relative electrophoretic mobility (REM) of LDL on agarose gels. Resveratrol (50 microM) reduced TBARS and REM of LDL during Cu(2+)-induced oxidation by 70.5% and 42.3%, respectively (p < 0.01), and prolonged the lag phase associated with the oxidative modification of LDL by copper ion or azo compound. These in vitro results suggest that resveratrol may afford protection of LDL against oxidative damage resulting from exposure to various environmental challenges, possibly by acting as a free radical scavenger.  相似文献   

5.
A new experimental model system constituted by ultraviolet-treated low-density lipoproteins (LDL) has been designed in order to investigate the biological effects of lipid peroxides entering the cell through the endocytotic pathway. This paper reports the chemical modifications of the lipid components and apolipoproteins of the ultraviolet-treated LDL. Human LDL were submitted to short ultraviolet radiations (254 nm, 0.5 mW/cm2, for variable periods of time) and compared to LDL peroxidized by iron. The lipid peroxidation was monitored by following the formation of the peroxidation products (conjugated dienes, thiobarbituric acid-reactive substances (TBARS) and fluorescent lipid-soluble products) and the change of the composition in polyunsaturated fatty acids, carotenes and vitamin E. Several parameters of the apo B-100 structure were investigated: molecular size (by SDS-PAGE) and TNBS-reactive amino groups (chemical determination by trinitrobenzene sulfonic acid). The most important feature was the absence of major modification of apo B-100 in ultraviolet-treated LDL: the molecular weight and the content in TNBS-reactive amino groups of apo B-100 were not modified. In contrast, iron-treated LDL exhibited a loss of the apo B-100 band and a decrease in the number of TNBS-reactive amino group. Both ultraviolet radiations and iron ions induced a significant decrease in the content of polyunsaturated fatty acids, carotenes and vitamin E together with a large formation of lipid peroxidation products. However, the time-course of the formation of conjugated dienes, TBARS and fluorescent lipid-soluble products was quite different using the two oxidative systems. These results demonstrate that ultraviolet radiations induced a strong peroxidation of the lipid content of LDL and no (or only minor) changes in the apolipoprotein moiety whereas iron-catalyzed peroxidation resulted in the formation fo lipid peroxidation products as well as apo B alterations.  相似文献   

6.
Oxidation of low-density lipoprotein (LDL) by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been suggested to be involved in the onset of atherosclerosis. Oolong tea contains unique polyphenols including oolonghomobisflavan A (OFA). In this study, the effects of OFA on LDL oxidation by ROS and RNS were investigated in vitro. OFA suppressed formation of cholesterol ester hydroperoxides in LDL oxidized by peroxyl radical and peroxynitrite, and formation of thiobarbituric acid reactive substances in LDL oxidized by Cu2+. In addition, OFA inhibited fragmentation, carbonylation, and nitration of apolipoprotein B-100 (apo B-100) in the oxidized LDL, in which heparin-binding activity of apo B-100 was protected by OFA. Our results suggest that OFA exhibits antioxidant activity against both lipid peroxidation and oxidative modification of apo B-100 in LDL oxidized by ROS and RNS. Polyphenols in oolong tea may prevent atherosclerosis by reducing oxidative stress.  相似文献   

7.
Lin X  Xue LY  Wang R  Zhao QY  Chen Q 《The FEBS journal》2006,273(6):1275-1284
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.  相似文献   

8.
槲皮素和芦丁抑制Fe ̄(2+)和Cu ̄(2+)诱导LDL氧化修饰的比较阎道广,周玫,陈瑗(第一军医大学自由基医学研究室广州510515)关键词低密度脂蛋白的氧化修饰,桷皮素,芦丁,Fe ̄(2+),Cu ̄(2+)黄酮类物质是自由基清除剂,能与超氧阴离子...  相似文献   

9.
Magnesium tanshinoate B (MTB) inhibits low density lipoprotein oxidation   总被引:6,自引:0,他引:6  
Danshen, a Chinese herbal medicine has been widely used for the treatment of cardiovascular diseases. Magnesium tanshinoate B (MTB) is an active compound purified from Danshen. The objective of this study was to investigate the effect of MTB on the susceptibility of low density lipoproteins (LDL) to oxidative modification as well as on the accumulation of lipids in THP-1 derived macrophages. Aliquots of LDL were incubated with copper sulfate in the absence or presence of MTB. The degrees of oxidative modification of LDL were assessed by examining the relative gel electrophoretic mobility, by measuring the amount of thiobarbituric acid reactive substances (TBARS), and by continuous monitoring of the formation of conjugated dienes upon the increase in absorbency at 234 nm. MTB at concentrations of 1-10 microM significantly inhibited oxidative modification of LDL. Such inhibitory effect resulted in a decrease in the uptake of LDL by THP-1 derived macrophages. Taken together, these results clearly demonstrate that MTB inhibits oxidative modification of LDL and hence prevents the uptake of LDL by cultured macrophages. Such effect may be therapeutically relevant in protecting cells from lipid peroxidation in vascular disorders.  相似文献   

10.
The oxidative modification of low-density lipoprotein (LDL) is suggested to play an important role in the pathogenesis of atherosclerosis. The present study examined the role of the formation of LDL-copper (Cu) complex in the peroxidation of LDL. The amount of copper bound to LDL increased during incubation performed with increasing concentrations of CuSO4. More than 80% of the copper bound to the LDL particle was observed in the protein phase of LDL, suggesting that most of the copper ions formed complexes with the ligand-binding sites of apoprotein. The addition of histidine (1 mM), known to form a high affinity complex with copper, and EDTA (1 mM), a metal chelator, during the incubation of LDL with CuSO4 prevented the formation of both thiobarbituric acid-reactive substances (TBARS) and LDL-Cu complexes. EDTA inhibited the copper-catalyzed ascorbate oxidation whereas histidine had no effect, suggesting that the copper within the complex with histidine is available to catalyze the reaction, in contrast to EDTA. These observations indicate that the preventive effect of histidine on the copper-catalyzed peroxidation of LDL is not simply mediated by chelating free copper ions in aqueous phase. Evidence that copper bound to LDL particle still has a redox potential was provided by the observed increase in TBARS content during incubation of LDL-Cu complexes in the absence of free copper ions. The addition of either histidine or EDTA to LDL-Cu complexes inhibited the formation of TBARS by removing copper ions from the LDL forming the corresponding complexes. However, there still remained small amounts of copper in the LDL particles following the treatment of LDL-Cu complexes with histidine or EDTA. The copper ions remaining in the LDL particle lacked the ability to catalyze LDL peroxidation, suggesting that there may be two types of copper binding sites in LDL: tight-binding sites, from which the copper ions are not removed by chelation, and weak-binding sites, from which copper ions are easily removed by chelators. The formation of TBARS in the LDL preparation during incubation with CuSO4 was comparable to the incubation with FeSO4. In contrast, the formation of TBARS in the LDL-lipid micelles by CuSO4 was nearly eliminated even in the presence of ascorbate to promote metal-catalyzed lipid peroxidation, although a marked increase in TBARS content was observed in the LDL-lipid micelles with FeSO4, and with FeCl3 in the presence of ascorbate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Metal-catalyzed LDL oxidation is enhanced by the presence of homocysteine. In this study, the effectiveness of ascorbic acid against low-density lipoprotein (LDL) oxidation by iron(III) and copper(II) in the presence of homocysteine and the main plasma disulfide cystine was investigated. Relative to the degree of LDL oxidation reached in the absence of antioxidants, ascorbic acid was particularly effective against iron-catalyzed LDL oxidation at pH 6.0. This can be explained from its stability under acidic conditions and is likely to be important in ischemia, in inflammation and exhausting exercise. At pH 7.4, an ascorbic acid concentration at least as high as the concentration of homocysteine might be necessary to efficiently inhibit LDL oxidation by iron(III) and copper(II) in the presence of homocysteine and cystine. Histidine increased the efficiency of ascorbic acid as an antioxidant against copper-mediated oxidation in this system. The capacity of homocysteine to regenerate ascorbic acid from dehydroascorbic acid appeared to play a minor role in inhibition of ascorbic acid oxidation by copper as compared to copper chelation by homocysteine.  相似文献   

12.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

13.
Homocysteine thiolactone is a cyclic thioester that is implicated in the development of atherosclerosis. This molecule will readily acylate primary amines, forming a homocystamide adduct, which contains a primary amine and a thiol. Here, we have characterized and evaluated the antioxidant potential of the homocystamide-low-density lipoprotein (LDL) adduct, a product of the reaction between homocysteine thiolactone and LDL. Treatment of LDL with homocysteine thiolactone resulted in a time-dependent increase in LDL-bound thiols that reached approximately 250 nmol thiol/mg LDL protein. The thiol groups of the homocystamide-LDL adduct were labeled with the thiol-reactive nitroxide, methanethiosulfonate spin label. Using paramagnetic relaxing agents and the electron spin resonance spin labeling technique, we determined that the homocystamide adducts were predominately exposed to the aqueous phase. The homocystamide-LDL adduct was resistant to myoglobin- and Cu2(+)-mediated oxidation (with respect to native LDL), as measured by the formation of conjugated dienes and thiobarbituric acid reactive substances, and the depletion of vitamin E. This antioxidant effect was due to increased thiol content, as the effect was abolished with N-ethylmaleamide pre-treatment. We conclude that the reaction between homocysteine thiolactone and LDL generates an LDL molecule that is more resistant to oxidative modification than native LDL. The potential relationship between the homocystamide-LDL adduct and the development of atherosclerosis is discussed.  相似文献   

14.
Oxidative modification of low-density lipoproteins (LDLs) is an important feature in the initiation and progression of atherosclerosis. Aminoguanidine (AMG), classically described as an inhibitor of advanced glycation end products, turned out to be also efficient in animal models as an antioxidant against lipid peroxidation. The originality of the present study was based on the simultaneous assessment of the oxidation of LDL lipid and protein moieties in order to characterize the molecular sites of AMG protection. Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes (CD) and hydroperoxide molecular species from cholesteryl esters (CEOOH) and phosphatidylcholines (PCOOH). LDL protein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. The LDL oxidation was mediated by water gamma radiolysis, which has the advantage of being quantitative and highly selective with regard to the free radicals produced. Here, we reported that AMG resulted in a protection of LDLs against lipid peroxidation (both in the lag phase and in the propagation phase) and against apoB fragmentation in a concentration-dependent manner, due to the scavenging effect of AMG toward lipid peroxyl radicals. Paradoxically, AMG was poorly efficient against apoB carbonylation that began during the lag phase. We hypothesize that, even in the presence of AMG, a nonnegligible proportion of (*)OH radicals remained able to initiate oxidation of the LDL protein moiety, leading to apoB carbonylation.  相似文献   

15.
Alzheimer's disease (AD) is characterised by the accumulation of insoluble beta-amyloid (A beta) fibrils in the brain. Factors that promote A beta fibrillogenesis may influence the pathogenesis of AD and represent targets for therapeutic intervention. Some A beta deposited in AD may originate in the circulation and plasma factors could promote A beta deposition, particularly in the cerebrovasculature. We investigated the effects of plasma low-density lipoprotein (LDL), in both its native and oxidised forms, on A beta(1-40) fibrillogenesis and vasoactivity. LDL enhanced A beta fibrillogenesis in a process dependent on LDL concentration and the oxidative state of the lipoprotein, as indicated by measurements of thiobarbituric acid reactive substances (TBARS) and conjugated dienes. LDL's actions were inhibited by the iA beta 5 peptide, suggesting that LDL-induced A beta polymerisation involved beta-pleated sheet formation. Potentiated A beta polymerisation was reflected by enhanced A beta-mediated vascular responses. Human endothelial cells exposed to fibrillar A beta generated with LDL, especially oxidised LDL, exhibited decreased 20S proteasome activity. Rat aortic ring constriction induced by noradrenaline was enhanced by A beta fibrils generated with LDL, with oxidised LDL producing the more marked effects. Should plasma lipoproteins prove to play a role in cerebral A beta deposition their modification with statins or antioxidants may offer therapeutic benefit.  相似文献   

16.
The oxidative modification of low-density lipoprotein (LDL) is involved in atherogenesis. Among a variety of modified LDLs mentioned in the literature, so-called minimally modified LDL (MM-LDL) was reported to have pro-atherogenic properties despite minimal changes in its oxidative measures. After treatment of LDL with 1 micro M FeSO(4) at 4 degrees C for 96 h, the resulting MM-LDL showed a slight increase in thiobarbituric acid-reactive substances (TBARS) and little association with macrophages. On the other hand, heavily oxidized LDL, which was prepared by copper-induced oxidation of LDL at 37 degrees C, showed a sharp increase in TBARS and strong association with macrophages. By introducing a fluorometric procedure to detect aldehyde-containing phosphatidylcholines (aldehyde-PCs), we examined the amounts of aldehyde-PCs in modified LDL preparations. Aldehyde-PCs increased to 23.4 pmol/ microg protein in MM-LDL, which was more than four-fold higher than in the heavily oxidized LDL. We conclude that MM-LDL is a unique type of oxidized LDL enriched with aldehyde-PCs.  相似文献   

17.
It is known that nonheme iron accumulates and free radicals are generated in skin exposed to ultraviolet (UV) light. Iron ions have a role in skin photodamage by participating in the formation of reactive oxygen species. In this study, we evaluated the effect of egg yolk phosvitin on UV-light-induced oxidative stress. Mouse dorsal skin homogenate was exposed to UVA light in the presence or absence of ferric nitrilotriacetate, (FeNTA). Lipid peroxidation was determined by measuring thiobarbituric acid-reactive substances (TBARS). The TBARS concentration increased with increasing FeNTA concentration and UV-light-exposure time. In the presence of FeNTA, phosvitin more effectively inhibited in vitro lipid peroxidation than did bovine serum albumin. According to results of electron spin resonance studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent, phosvitin suppressed the formation of hydroxyl radicals. These results suggest that UV-light-induced oxidative stress can be reduced by phosvitin.  相似文献   

18.
Effect of quercetin and its conjugated metabolite quercetin 3-O-β-D-glucuronide (Q3GA), on peroxynitrite-induced consumption of lipophilic antioxidants in human plasma low-density lipoprotein (LDL) was measured to estimate the role of dietary flavonoids in the defense system against oxidative modification of LDL based on the reaction of nitric oxide and superoxide anion. Synthesized peroxynitrite-induced consumption of endogenous lycopene β-carotene and α-tocopherol was effectively suppressed by adding quercetin aglycone into LDL solution. Q3GA also inhibited the consumption of these antioxidants effectively. These results indicate that dietary quercetin is capable of inhibiting peroxynitrite-induced oxidative modification of LDL in association with lipophilic antioxidants present within this lipoprotein particle.  相似文献   

19.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

20.
Oxidative modification of human low-density lipoprotein (LDL) renders it atherogenic. Previous studies demonstrated that plasma thiols promote oxidation of LDL by free ferric iron (Fe3+). The current study investigated effects of plasma thiols on oxidation of LDL by hemin, a physiological Fe3+-protoporphyrin IX complex thought to be capable of initiating LDL oxidation in vivo. In contrast to free Fe3+ which is incapable of oxidizing LDL in the absence of an exogenous reductant, hemin readily promoted LDL oxidation. During incubation of LDL (0.2 mg of protein/ml) with hemin (10 microM) at 37 degrees C for 6 h, thiobarbituric acid-reactive substances (TBARS), a marker of lipid oxidation, increased from 0.3 (+/-0.1) nmol/mg of LDL protein to a maximal concentration of 45.8 (+/-5.2) nmol/mg of LDL protein. Under the same experimental conditions, lipid-conjugated dienes, another marker of lipid oxidation, increased from non-detectable to near-maximal levels of 78-187 nmol/mg of LDL protein, and lipoprotein polyunsaturated fatty acyl-containing cholesteryl ester content decreased to 15-36% of that present in native (i.e. unoxidized) LDL. Continued incubation of LDL with hemin for up to 24 h resulted in no further significant alterations in lipoprotein levels of TBARS, lipid-conjugated dienes, and cholesteryl esters. In addition to these chemical modifications indicative of lipoprotein oxidation, agarose gel electrophoretic analysis indicated that exposure of LDL to hemin resulted in conversion of the lipoprotein to an atherogenic form as evidenced by its increased anodic electrophoretic mobility. Addition of physiological concentrations of plasma thiols (either cysteine, homocysteine or reduced glutathione; 1-100 microM, each) inhibited hemin-mediated oxidation of LDL. Thus, whereas the maximal TBARS concentration was achieved following 6 h of incubation of LDL with hemin alone, addition of thiol extended the time required to attain maximal TBARS concentration to > or = 12 h. Similar antioxidant effects of thiols on formation of lipid-conjugated dienes, loss of cholesteryl esters, and lipoprotein anodic electrophoretic mobility were also observed. However, all thiols were not equally effective at inhibiting hemin-dependent LDL oxidation. Thus, whereas reduced glutathione was most effective at inhibiting hemin-dependent LDL oxidation, an intermediate effect was observed for homocysteine, and cysteine was least effective. The inhibition of hemin-mediated LDL oxidation by plasma thiols reported here confirms a previous observation that, under certain conditions, thiols can function as antioxidants, but contrasts with the previously documented pro-oxidant effect of the same thiols on oxidation of LDL by free Fe3+. These contrasting effects of plasma thiols on hemin- and free Fe3+-mediated LDL oxidation indicate that, in vivo, the ability of thiols to function as either anti- or pro-oxidants during LDL oxidation may, at least in part, be determined by the type of oxidant stress to which the lipoprotein is exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号