首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenylketonuria (PKU) is an inherited metabolic disorder caused by deficiency of phenylalanine hydroxylase which leads to accumulation of phenylalanine and its metabolites in tissues of patients with severe neurological involvement. Recently, many studies in animal models or patients have reported the role of oxidative stress in PKU. In the present work we studied the effect of lipoic acid against oxidative stress in rat brain provoked by an animal model of hyperphenylalaninemia (HPA), induced by repetitive injections of phenylalanine and α-methylphenylalanine (a phenylalanine hydroxylase inhibitor) for 7 days, on some oxidative stress parameters. Lipoic acid prevented alterations on catalase (CAT) and superoxide dismutase (SOD), and the oxidative damage of lipids, proteins, and DNA observed in HPA rats. In addition, lipoic acid diminished reactive species generation compared to HPA group which was positively correlated to SOD/CAT ratio. We also observed that in vitro Phe inhibited CAT activity while phenyllactic and phenylacetic acids stimulated superoxide dismutase activity. These results demonstrate the efficacy of lipoic acid to prevent oxidative stress induced by HPA model in rats. The possible benefits of lipoic acid administration to PKU patients should be considered.  相似文献   

2.
Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.  相似文献   

3.
N-Acetylaspartic acid (NAA) accumulates in Canavan disease, a severe inherited neurometabolic disorder clinically characterized by mental retardation, hypotonia, macrocephaly, and seizures. The mechanisms of brain damage in this disease remain poorly understood. Recent studies developed by our research group showed that NAA induces oxidative stress in vitro and in vivo in cerebral cortex of rats. Lipoic acid is considered as an efficient antioxidant which can easily cross the blood–brain barrier. Considering the absence of specific treatment to Canavan disease, this study evaluates the possible prevention of the oxidative stress promoted by NAA in vivo by the antioxidant lipoic acid to preliminarily evaluate lipoic acid efficacy against pro-oxidative effects of NAA. Fourteen-day-old Wistar rats received an acute administration of 0.6 mmol NAA/g body weight with or without lipoic acid (40 mg/kg body weight). Catalase (CAT), glutathione peroxidase (GPx), and glucose 6-phosphate dehydrogenase activities, hydrogen peroxide content, thiobarbituric acid-reactive substances (TBA-RS), spontaneous chemiluminescence, protein carbonyl content, total antioxidant potential, and DNA–protein cross-links were assayed in the cerebral cortex of rats. CAT, GPx activities, and total antioxidant potential were significantly reduced, while hydrogen peroxide content, TBA-RS, spontaneous chemiluminescence, and protein carbonyl content were significantly enhanced by acute administration of NAA. Those effects were all prevented by lipoic acid pretreatment. Our results clearly show that lipoic acid may protect against the oxidative stress promoted by NAA. This could represent a new therapeutic approach to the patients affected by Canavan disease.  相似文献   

4.
《Free radical research》2013,47(8):593-601
Abstract

Inflammation results in the production of free radicals. We evaluated the anti-inflammatory and antioxidant capacity of lipoic acid in an experimental uveitis model upon a subcutaneous injection of endotoxin into Lewis rats. The role of oxidative stress in the endotoxin-induced uveitis model is well-known. Besides, the Th1 response classically performs a central part in the immunopathological process of experimental autoimmune uveitis. Exogenous sources of lipoic acid have been shown to exhibit antioxidant and anti-inflammatory properties. Our results show that lipoic acid treatment plays a preventive role in endotoxin-induced oxidative stress at 24 h post-administration and reduced Th1 lymphocytes-related cytokines by approximately 50–60%. Simultaneously, lipoic acid treatment caused a significant reduction in uveal histopathological grading and in the protein concentration in aqueous humors, but not in cellular infiltration.  相似文献   

5.
Using hepatocytes in suspension, freshly isolated from adult male fed rats, we studied the acute influence of recombinant human interleukins 1 alpha, 2 and 6 on glycogen and fatty acid metabolism. By far the largest effects were observed with interleukin-1 alpha: short incubations (up to 60 min) sufficed to depress glycogen synthesis in a dose-dependent manner, while the rates of glycogenolysis and glycolysis were increased as indicated by the release of glucose and lactate. Interleukin-6 acted similarly, though being much less effective on a molar basis, whereas interleukin-2 only caused a small increase in lactate production. In hepatocytes from 24h-starved rats interleukin-1 alpha caused a minor stimulation of gluconeogenesis. Although neither fatty acid synthesis nor oxidation of fatty acids in quiescent hepatocytes from fed rats was significantly affected by interleukins, interleukin-1 alpha was able to cause appreciable inhibition of fatty acid synthesis in hepatocytes from regenerating liver (isolated 22h after partial hepatectomy). It is concluded (i) that interleukins, in particular interleukin-1 alpha, acutely promote hepatic glucose release, and (ii) that transition of adult hepatocytes from a quiescent into a proliferatory state allows the occurrence of rapid effects of interleukin-1 alpha on fatty acid metabolism.  相似文献   

6.
Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.  相似文献   

7.
Oxidative stress is stated to be a central mechanism of hepatocellular injury in alcohol-induced liver injury. Recent reports have shown that Kupffer cell dysfunction in the leptin-deficient state contributes partly to the increased sensitivity to endotoxin liver injury. Here we report that leptin also plays a key role in the development of alcoholic liver injury and that leptin signaling in hepatocytes is involved in cellular mechanisms that mediate ethanol-induced oxidative stress. We found that chronic ethanol feeding in leptin receptor-deficient Zucker (fa/fa) rats for 6 wk resulted in a much more severe liver injury and augmented accumulation of hepatic lipid peroxidation compared with control littermates. The hepatic induction of stress-response and antioxidant proteins, such as metallothionein (MT)-1 and -2, was significantly suppressed in fa/fa rats after chronic ethanol feeding. Zinc concentration in liver was also decreased in fa/fa rats, compared with control littermates. In primary cultured hepatocytes from fa/fa rats, incubation with ethanol significantly suppressed MT-1 and -2 expressions. Addition of leptin to leptin-deficient ob/ob mouse primary hepatocytes led to an increase in MT-1 and -2 mRNA levels and a decrease in oxidative stress after incubation with ethanol. In conclusion, leptin deficiency enhances sensitivity of rats to alcohol-induced steatohepatitis through hepatocyte-specific interaction of MT-1 and -2 and resultant exaggeration of oxidative stress in hepatocytes. These findings suggest that leptin resistance in hepatocytes is an important mechanism of alcohol-induced liver injury.  相似文献   

8.
9.
This study is focused on the role of UCP-2 in hepatic oxidative metabolism following acute CCl(4) administration to rats. UCP-2 mRNA, almost undetectable in the liver of controls, was significantly increased 24 h after CCl(4) administration, peaked at 72 h and then tended to disappear. UCP-2 protein, undetectable in controls, increased 48-72 h after CCl(4) treatment. Experiments with isolated liver cells indicated that in control rats UCP-2 was expressed in non-parenchymal cells and not in hepatocytes, whereas in CCl(4)-treated rats UCP-2 expression was induced in hepatocytes and was not affected in non-parenchymal cells. Addition of CCl(4) to the culture medium of hepatocytes from control rats failed to induce UCP-2 expression. Liver mitochondria from CCl(4)-treated rats showed an increase of H(2)O(2) release at 12-24 h, followed by a rise of TBARS. Vitamin E protected liver from CCl(4) injury and reduced the expression of UCP-2. Treatment with GdCl(3) prior to CCl(4), in order to inhibit Kupffer cells, reduced TBARS and UCP-2 mRNA increase in hepatic mitochondria. Our data indicate that CCl(4) induces the expression of UCP-2 in hepatocytes with a redox-dependent mechanism involving Kupffer cells. A role of UCP-2 in moderating CCl(4)-induced oxidative stress during tissue regeneration after injury is suggested.  相似文献   

10.
Oxidative stress has been implicated as a causal factor in the aging process of the heart and other tissues. To determine the extent of age-related myocardial oxidative stress, oxidant production, antioxidant status, and oxidative DNA damage were measured in hearts of young (2 months) and old (28 months) male Fischer 344 rats. Cardiac myocytes isolated from old rats showed a nearly threefold increase in the rate of oxidant production compared to young rats, as measured by the rates of 2,7-dichlorofluorescin diacetate oxidation. Determination of myocardial antioxidant status revealed a significant twofold decline in the levels of ascorbic acid (P = 0.03), but not alpha-tocopherol. A significant age-related increase (P = 0.05) in steady-state levels of oxidative DNA damage was observed, as monitored by 8-oxo-2'-deoxyguanosine levels. To investigate whether dietary supplementation with (R)-alpha-lipoic acid (LA) was effective at reducing oxidative stress, young and old rats were fed an AIN-93M diet with or without 0.2% (w/w) LA for 2 wk before death. Cardiac myocytes from old, LA-supplemented rats exhibited a markedly lower rate of oxidant production that was no longer significantly different from that in cells from unsupplemented, young rats. Lipoic acid supplementation also restored myocardial ascorbic acid levels and reduced oxidative DNA damage. Our data indicate that the aging rat heart is under increased mitochondrial-induced oxidative stress, which is significantly attenuated by lipoic acid supplementation.  相似文献   

11.
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.  相似文献   

12.
13.
14.
Total parenteral nutrition (TPN) is provided as the primary nitrogen source to manage patients with intestinal failure who were not able to sustain themselves on enteral feeds. The most common complication of long‐term TPN use is hepatitis. A proteomic approach was used to identify proteins that are differentially expressed in the plasma of rats following TPN‐related acute liver injury. Six male rats were randomly assigned to either the saline infusion control group or the TPN infusion group. Our results demonstrate that TPN infusion in rats resulted in hepatic dysfunction and hepatocyte apoptosis. Five proteins that were differentially expressed between TPN infusion and normal rats were determined and validated in vivo. Fascinatingly, the proteomic differential displays, downregulated proteins included peroxiredoxin 2 (PRDX2), alpha‐1‐antiproteinase (A1AT), and fibrinogen gamma chain (FIBG), which were involved in oxidative stress, inflammatory respondence and cells apoptosis. After TPN infusion, two protein spots showed increased expression, namely, the glucagon receptor (GLR) protein and apolipoprotein A‐1 (APOA1), which may mediate the effects of TPN administration on glycogen and lipid metabolism. In this study, proteomic analysis suggested TPN‐related acute liver injury could be involved in limiting cellular protection mechanisms against oxidative stress‐induced apoptosis. On the basis of the results, we also give molecular evidences replying TPN‐related hepatitis.  相似文献   

15.
The activity of a glycopeptide prepared from rat serum by treatment with trypsin and ultrafiltration was investigated in several in vivo proliferation systems. In baby rat hepatocytes synchronized by a subcutaneous injection of casein solution it caused a G1-S block, stopping cells at the end of the G1 phase and sending them back to the G0 phase. The glycopeptide also caused a G1-S block in young adult rats during the first semi-synchronized wave of proliferation that followed partial hepatectomy. Inhibition of hepatocyte proliferation by the glycopeptide was suppressed by blood proteins from normal rats but not from acute phase rats. Alpha 1-acid glycoprotein, an acute phase protein, increased this inhibition and reversed the antagonistic effect of normal blood proteins. In normal baby rats a G1-S block of non-synchronously proliferating hepatocytes was produced in two situations in which the antagonistic effect of normal blood proteins was eliminated: after treatment of the glycopeptide with leucine-aminopeptidase, and after mixing it with alpha 1-acid glycoprotein. The glycopeptide did not inhibit cell proliferation in kidney, submaxillary gland, or tongue epithelium. It seems to be the active component of a system that inhibits the proliferation of hepatocytes, probably by reducing their sensitivity to various mitogenic stimuli.  相似文献   

16.
The infusion tea extracted from the leaves of the plant Camellia sinensis can be used in the prevention of cancer, cardiovascular and neurodegenerative diseases, and aging, while adriamycin (ADR) is an anticancer drug that increases oxidative stress in cells. The present study evaluated the protective effect of the long-term consumption of white tea used at two different doses against the oxidative stress produced by aging and acute oxidation caused ADR treatment. At wearing, rats received distilled water (control), or 0.15 (dose 1) or 0.45 mg (dose 2) of solid tea extract/kilogram body weight in their drink. At 12 months, about half of the rats of each group were injected with a bolus of ADR, and six rats of the control group with an injection of saline solution and sacrificed. The rest of the animals continued in their cages until 24 months of age, when they were sacrificed. Lipid and protein oxidation of liver and brain microsomes was analyzed by measuring hydroperoxide and carbonyl levels. White tea consumption for 12 months at a non-pharmacological dose was seen to reverse the oxidative damage caused by ADR in both liver and brain, while the consumption of white tea for 20 months at a non-pharmacological dose had no effect on carbonyl or hydroperoxides in these tissues. The long-term ingestion of white tea protected tissues from acute oxidative stress but did not affect chronic oxidative agents such aging.  相似文献   

17.
During inflammation and tissue injury, there is an increase in the plasma concentration of several proteins, the acute-phase proteins. The levels of some acute-phase proteins have been reported to increase in pregnant and tumour-bearing animals. Rat alpha 2-macroglobulin is classified as an acute-phase protein. In this study we report the expression of alpha 2-macroglobulin in various tissues during development of the rat embryo by analysis of mRNA. The tissues studied are liver, visceral yolk sac, placental labyrinth, decidua and trophoblast. In addition, the sites of alpha 2-macroglobulin expression are localized by in situ hybridization of cDNA for alpha 2-macroglobulin to mid-sagittal cryosections of rat embryos. The level of mRNA coding for alpha 2-macroglobulin is determined in the liver of rats aged between 12 days gestation and 2 days postnatal. alpha 2-Macroglobulin mRNA is first observed in fetal liver from 12 days of gestation and increases after day 17, reaching a maximum on day 20. At this time the level is greater than that found in the liver of an adult rat suffering from acute inflammation. alpha 2-Macroglobulin mRNA is detectable in the yolk sac, placental labyrinth, trophoblast tissue and decidua. In the decidua the alpha 2-macroglobulin message is first detected at 8 days of gestation, with high levels observed from 10 to 21 days of gestation. These observations are supported by in situ hybridization studies. Experiments using cultured hepatocytes show that cells derived from rats at 15 days and 19 days of gestation are capable of synthesizing and secreting alpha 2-macroglobulin. Both synthesis and secretion can be induced by the addition of dexamethasone to the culture medium.  相似文献   

18.
Adrenaline is able to increase the oxidative damage caused by some xenobiotic agents in the liver. Ethanol produces oxidative changes in hepatic tissue, while an acute intoxication with alcohol increases adrenaline blood levels. The aim of this study was to determine whether adrenaline increases ethanol-induced hydroxyl free radical production in isolated hepatocytes. Adrenaline augmented hydroxyl radicals in a concentration-dependent manner and was blocked by chloroethylclonidine, an alpha(1B)-adrenoceptor antagonist, while adrenaline plus ethanol added their individual effects. It is suggested that adrenaline increases hydroxyl radicals by an alpha(1B)-adrenoceptor-mediated mechanism, while ethanol does so by a receptor-independent mechanism.  相似文献   

19.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

20.
Hepatocytes of a primary cell culture that are exposed to high glucose, insulin, and linoleic (LA) acid concentration respond with lipid accumulation, oxidative stress up to cell death. Such alterations are typically found in patients with non-alcoholic fatty liver disease (NAFLD). We used this cellular model to study the effect of an ethanolic Gynostemma pentaphyllum (GP) extract in NAFLD. When hepatocytes were cultured in the presence of high insulin, glucose, and LA concentration the extract completely protected the cells from cell death. In parallel, the extract prevented accumulation of triglycerides (TGs) and cholesterol as well as oxidative stress. Our data further demonstrate that GP stimulates the production of nitric oxide (NO) in hepatocytes and affects the molecular composition of the mitochondrial phospholipid cardiolipin (CL). We conclude that GP is able to protect hepatocytes from cell death, lipid accumulation, and oxidative stress caused by diabetic-like metabolism and lipotoxicity. Therefore, GP could be beneficial for patients with diabetes mellitus and NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号