首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The influence of microheterogeneity on enzyme inactivation kinetics is presented. Examples of different enzymes are given where microheterogeneity has been detected by different techniques. The different statistical models are presented which include the influence of microheterogeneity on enzyme inactivation kinetics and stability. As the microheterogeneity of the enzyme increases, there is a sharper decline in the normalized activity during the initial stages of the deactivation but a greater stability and activity, compared to similar homogeneous enzyme, as the deactivation proceeds. Microheterogeneity makes the deactivation reaction have a higher apparent order of reaction. The implications of microheterogeneity on enzyme inactivations are high lighted by different examples. The analysis provides fresh physical insights into the chemistry, subpopulations, structure, and function of enzymes.  相似文献   

2.
Enzyme deactivation kinetics is often first-order. Different examples of first-order deactivation kinetics exhibited by different enzymes under a wide variety of conditions are presented. Examples of both soluble and immobilized enzymes are presented. The influence of different parameters, chemical modification of specific residues, inhibitors, inactivators, protecting agents, induced conformational changes by external agents, enzyme concentration, and different substrates on the first-order inactivation kinetics of different enzymes is analyzed. The different examples presented from a variety of different areas provides a judicious framework and collection demonstrating the wide applicability of first-order deactivation kinetics. Examples of reversible first-order deactivation kinetics and deactivation-disguise kinetics are also presented.Different mechanisms are also presented to model complex enzyme deactivations. The non-series type mechanisms are emphasized and these involve the substrate and chemical modifiers. Substrate-dependent deactivation rate expressions that are of "separable" and "non-separable" type are presented. Rate expressions involving time-dependent rate constants along with their corresponding mechanisms are presented. Examples of enzymes that exhibit a deactivation-free grace period are also given. An interesting case of enzyme inactivation is the loss of activity in the presence of an auto-decaying reagent. The method is presented by which the intrinsic inactivation rate constants may be obtained. Examples of pH-dependent enzyme inactivation are presented that may be modelled by a five-step (or a simplified two-step) mechanism, and also by a single-step mechanism involving residual activity for the final state. Appropriate examples of enzyme inactivation are presented in each case to highlight the different mechanisms involved.  相似文献   

3.
The influence of chemical modification on the initial specific activity, residual activity, and deactivation kinetics of various enzymes is analyzed using a series mechanism. This straightforward multistate sequential model presented is consistent with the enzyme deactivation data obtained from different fields. The enzymes are placed in five different categories depending on the effect of chemical modification on initial specific activity and residual activity or stability. Wherever possible, structure-function relationships are described for the enzymes in the different categories. The categorization provides one avenue that leads to further physical insights into enzyme deactivation processes and into the enzyme structure itself.  相似文献   

4.
A series deactivation model is utilized to theoretically examine the influence of different modifying agents on enzyme deactivation kinetics. A form of the Hill-type equation is used to describe the effect of the modifying agents on the model parameters. Modification-induced inactivation equations are presented for the acetylation and succinylation of E. Coli asparaginase, for the site-specific reagent and substrate modification of flavocytochrome b(2) from Baker's yeast, and for the guanidinium chloride inactivation of cathepsin D. The analysis of more data for these and other enzymes would help further substantiate the technique presented and enhance the applicability of the model.  相似文献   

5.
A pH-dependent "series-type" enzyme deactivation model using rapid protonation and deprotonation equilibria and the relatively slower inactivation rates is presented. From the enzyme activity-time trajectories at different pH the models presented permit the evaluation of some of the protonation and inactivation rate constants as well as the specific activities of the different enzyme forms. pH dependence of enzyme deactivations may also exhibit deactivation disguised kinetics. Three different examples of pH-dependent enzyme deactivations available in the literature are appropriately modeled to indicate the general applicability of the model. The model presented is consistent with the data and provides mechanistic insights into the pH-dependent deactivation of different enzymes.  相似文献   

6.
A series-type enzyme deactivation model is used to model and to quantitate some more complex enzyme deacti-vations. The influence of temperature, pH, immobilization, chemical modifier (inhibitor or protector), substrate, and metal ion on the inactivation kinetics and on the parameter values is examined. In some cases the influence of two parameters on enzyme inactivations is presented. This provides further physical insights into enzyme inactivation and stabilization processes.  相似文献   

7.
The kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micellar media was studied. It was shown that the deactivation of lipase had a great influence on the reaction kinetics. Based on whether the enzyme deactivation and influences of both product and substrate on enzyme stability were included or not, four different kinetic models were established. The simulating results demonstrated that the kinetic model, which including product inhibition, enzyme deactivation and the improvements of lipase stability by both product and substrate, fit the experimental data best with an overall relative error of 4.68%.  相似文献   

8.
A first-order deactivation model which involves a grace period is shown to fit reasonably well to the data presented for immobilized and soluble enzyme deactivation. The model involves the existence of a step that does not destroy enzyme activity as a compulsory precursor of the step that does. Two types of cases are presented in which the deactivation rate coefficient may or may not increase with time.  相似文献   

9.
We report on novel developments regarding the influence of temperature and salt on protein biocatalysts. The influence of temperature on the activation, unfolding, and deactivation of enzymes can now be described quantitatively with simple, analytical models. We demonstrate that enzyme deactivation phenomena can be determined via T-ramping and observation of instantaneous rates. We calculate the total turnover number analytically on the basis of the deactivation mechanism. We also report on the latest efforts to quantify the influence of salts on protein biocatalyst stability. While effects cannot yet be rationalized completely, we nevertheless found novel correlations between protein unfolding and deactivation and ion hydration.  相似文献   

10.
We report on novel developments regarding the influence of temperature and salt on protein biocatalysts. The influence of temperature on the activation, unfolding, and deactivation of enzymes can now be described quantitatively with simple, analytical models. We demonstrate that enzyme deactivation phenomena can be determined via T-ramping and observation of instantaneous rates. We calculate the total turnover number analytically on the basis of the deactivation mechanism. We also report on the latest efforts to quantify the influence of salts on protein biocatalyst stability. While effects cannot yet be rationalized completely, we nevertheless found novel correlations between protein unfolding and deactivation and ion hydration.  相似文献   

11.
A quantitative procedure for estimating changes in enzyme stability upon chemical modification is presented. Stability index for different deactivation mechanisms is presented and applied to different enzyme deactivations. The stability index provides a convenient method of estimating changes in enzyme stability upon chemical modification.  相似文献   

12.
A general theory is presented in this article for determining the intrinsic rate constants for the main reaction and deactivation reaction, the effective diffusivity of the substrate, and the active enzyme distribution within porous solid supports from deactivation study of a continuous stirred-basket reactor (CSBR). For the parallel deactivation five reaction kinetics are considered: (a) Michaelis-Menten, (b) substrate inhibition, (c) product inhibition (competitive), (d) product inhibition (anticompetitive), and (e) zero-order kinetics. The experimental results of the system of hydrogen-peroxide-immobilized catalase on controlled-pore glass particles are analyzed to demonstrate the application of the theory developed for parallel deactivation of active immobilized enzyme (IME). For series deactivation only first-order kinetics is treated, and a numerical procedure is proposed to deter mine the rate parameters and the internal active enzyme distribution. The experimental data of the system of glucose-immobilized glucose oxidase on silica-alumina and controlled-pore glass particles are used to verify the theory.  相似文献   

13.
Summary An experimental technique is described, which allows to discriminate between series and parallel enzyme deactivation patterns. It consists in monitoring the enzyme activity as a function of time and in step-increasing the temperature, at a given stage of the deactivation process. Single-step deactivation processes are also discussed, for comparison purposes. The experimental results presented refer to B-galactose dehydrogenase, B-D-galactosidase, B-fructosidase.  相似文献   

14.
A two-parameter theoretical model is developed to evaluate the effect of immobilized enzyme deactivation on substrate conversion in fixed- and fluid-bed reactors under diffusion-free conditions. The method describes a simple reaction in which three different immobilized enzyme deactivation forms are considered, and an expression is developed to evaluate the effect of immobilized enzyme deactivation on yield in a consecutive reaction. Comparison of reactor performances for the two reactor types reduces to a comparison of the appropriate dimensionless parameters. The practical implications of the development are illustrated through an example.  相似文献   

15.
A new method is presented to determine (1) the rate constant for the main reaction, (2) the rate constant for deactivation, (3) the effective diffusivity, and (4) the active enzyme distribution within a porous solid support by utilizing data of bulk substrate concentration versus time in a continuous stirred basket reactor. The method relies on an assumption of parallel deactivation mechanism with strong pore diffusional resistance with respect to substrate species. The data of hydrogen peroxide-immobilized catalase published in the literature are used to demonstrate the theory. A parameter determination procedure is also presented.  相似文献   

16.
When any muscle in the human musculoskeletal system is damaged, other muscles and ligaments tend to compensate for the role of the damaged muscle by exerting extra effort. It is beneficial to clarify how the roles of the damaged muscles are compensated by other parts of the musculoskeletal system from the following points of view: From a clinical point of view, it will be possible to know how the abnormal muscle and joint forces caused by the acute compensations lead to further physical damage to the musculoskeletal system. From the viewpoint of rehabilitation, it will be possible to know how the role of the damaged muscle can be compensated by extra training of the other muscles. A method to evaluate the influence of muscle deactivation on other muscles and joints is proposed in this report. Methodology based on inverse dynamics and static optimization, which is applicable to arbitrary motion was used in this study. The evaluation method was applied to gait motion to obtain matrices representing (1) the dependence of muscle force compensation and (2) the change to bone-on-bone contact forces. These matrices make it possible to evaluate the effects of deactivation of one of the muscles of the musculoskeletal system on the forces exerted by other muscles as well as the change to the bone-on-bone forces when the musculoskeletal system is performing the same motion. Through observation of this matrix, it was found that deactivation of a muscle often results in increment/decrement of force developed by muscles with completely different primary functions and bone-on-bone contact force in different parts of the body. For example, deactivation of the iliopsoas leads to a large reduction in force by the soleus. The results suggest that acute deactivation of a muscle can result in damage to another part of the body. The results also suggest that the whole musculoskeletal system must go through extra retraining in the case of damage to certain muscles.  相似文献   

17.
Enzymes are deactivated by different ways to an inactive state, which is a major constraint in the development of biotechnological processes. Understanding the complex process of enzyme deactivation will be helpful in enhancing the feasibility of many biological processes. This paper mainly deals with the different ways by which enzymes are inactivated, which includes the role of thermodynamics in deactivation. Different models namely, unified deactivation theory, single exponential model, rapid equilibrium model, isozyme model and bacterial contamination model used to describe the complex deactivation processes are also discussed in this communication. The complete understanding of deactivation process is very essential in commercialization because enzyme activity and stability of the enzyme play a critical role in economics of biotechnological processes. Activity and stability of the enzyme are conflicting properties and trade-off between these factors must be considered in the selection and design of enzymes.  相似文献   

18.
A two-parameter deactivation model is proposed to describe the kinetics of activity stabilization for some enzymes. The single-step unimolecular mechanism exhibits non-first-order deactivation kinetics since the final enzyme state, E(1) is not completely inactivated. The usefulness of the model is demonstrated by applying it to the inactivation of different enzymes. The influence of the concentration of active ester, ionic strength, and pH on the model parameters is examined during the inactivation of electric eel acetylcholinesterase.(25) In general, inactivators would decrease the level of activity stabilization, alpha(1), and increase the first-order inactivation rate constant, k(1). The effect of protecting agents would be to increase alpha(1) and to decrease k(1).  相似文献   

19.
Studies have been performed in a tubular flow reactor to characterize the deactivation of immobilized glucose oxidase. The effects of oxygen concentration in the range of 0.09 to 0.467mM and hydrogen peroxide concentrations in the range of 0.1 to 10mM were studied. A simple mathematical model assuming first-order reaction and deactivation was found to describe the deactivation behavior adequately. The deactivation rate constant was found to increase with increasing levels of feed oxygen. Hydrogen peroxide was found to deactivate the enzyme severely and the deactivation rate constants were higher than those for oxygen deactivation. The influence of external and internal diffusion effects on the deactivation rate constant were examined. Although diffusional restrictions were negligible for oxygen transfer to the pellet, they were significant for transfer of hydrogen peroxide to the bulk stream. Increasing deactivation rates. Severe internal diffusion limitations were observed for the glucose oxidase system. However, for particle sizes in the range of 500 to 2000 μm, no effect on the rate of deactivation of the enzyme was observed.  相似文献   

20.
Immobilization of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from spinach leaves is described. This enzyme enables the fixation of carbon dioxide on a five-carbon sugar D-ribulose-1,5-bisphosphate (RuBP). Two different immobilization methods were employed: dicyclohexylcarbodiimide coupling on nylon membrane matrix and dimethylpimelimidate immobilization on protein A agarose. The reusability of immobilized enzymes, coupling efficiency, and temperature-activity relationship of soluble and immobilized Rubisco are presented. The immobilization imparted greater thermal and storage stability. The thermal deactivation rates of the immobilized enzymes were considerably lower than those of the soluble enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号