首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Free radical research》2013,47(8):925-935
Abstract

The present study tested the cytoprotective effect of methyleugenol in an in vivo ischemia model (i.e. middle cerebral artery occlusion (MCAO) for 1.5 h and subsequent reperfusion for 24 h) and further investigated its mechanism of action in in vitro cerebral ischemic models. When applied shortly after reperfusion, methyleugenol largely reduced cerebral ischemic injury. Methyleugenol decreased the caspase-3 activation and death of cultured cerebral cortical neurons caused by oxygen-glucose deprivation (OGD) for 1 h and subsequent re-oxygenation for 24 h. Methyleugenol markedly reduced superoxide generation in the ischemic brain and decreased the intracellular oxidative stress caused by OGD/re-oxygenation. It was found that methyleugenol elevated the activities of superoxide dismutase and catalase. Further, methyleugenol inhibited the production of nitric oxide and decreased the protein expression of inducible nitric oxide synthase. Methyleugenol down-regulated the production of pro-inflammatory cytokines in the ischemic brain as well as in immunostimulated mixed glial cells. The results indicate that methyleugenol could be useful for the treatment of ischemia/inflammation-related diseases.  相似文献   

2.
In this study, we explored the cytoprotective potential of silibinin against oxygen–glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.  相似文献   

3.
4.
Oxidative stress plays crucial role in the pathogenesis of neurodegenerative diseases. However, the precise mechanism for an increased production of reactive oxygen species (ROS) under pathological conditions is not yet fully understood. We have recently demonstrated an implication of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor, in ROS generation and neuronal apoptosis induced by staurosporine. These findings raised further interest whether PTEN functions as a common mediator of oxidative stress in neurodegenerative processes. To address this issue, neural cells were exposed to oxygen-glucose deprivation (OGD) and to the neurotoxin 1-methyl-4-phenylpyridinium iodide (MPP(+)), which mimic cerebral ischemia and Parkinson's disease, respectively. OGD for 4 h followed by 16 h of reoxygenation or incubation with MPP(+) (250 microM) for 48 h induced 33% and 45% neuronal death in rat hippocampal and in human dopaminergic SH-SY5Y neurons, respectively, accompanied by a gradual increase in the intracellular level of ROS. The increase in ROS by OGD and by MPP(+) did not cause oxidative inactivation of PTEN and thus, PTEN remains constitutively active. In support, the protein level of PTEN was not reduced in both cell cultures after challenging with OGD or MPP(+). Importantly, the elevated intracellular ROS levels and the neuronal death caused by OGD or by MPP(+) toxicity were significantly inhibited when PTEN was downregulated by a specific antisense oligonucleotide or by siRNA. Because SOD2 protein level is not altered either by knockdown of PTEN nor by an inhibition of the PI3K/Akt signalling, we suggest that SOD2 do not contribute to the pathomechanism of oxidative stress induced by PTEN or by inhibiting the related Akt signalling. The present study highlights PTEN as a crucial and common mediator of ROS generation and neuronal death and suggests that PTEN could become a potential therapeutic target for interfering with neurodegeneration.  相似文献   

5.
Neuronal mitochondrial dynamics are disturbed after ischemic stroke. Optic atrophy 1 (OPA1) and its GTPase activity are involved in maintaining mitochondrial cristae and inner membrane fusion. This study aimed to explore the role of OMA1-mediated OPA1 cleavage (S1-OPA1) in neurons exposed to cerebral ischemia and reperfusion. After oxygen-glucose deprivation (OGD) for 60 min, we found that mitochondrial fragmentation occurred successively in the axon and soma of neurons, accompanied by an increase in S1-OPA1. In addition, S1-OPA1 overexpression significantly aggravated mitochondrial damage in neurons exposed to OGD for 60 min and 24 h after OGD/R, characterized by mitochondrial fragmentation, decreased mitochondrial membrane potential, mitochondrial cristae ultrastructural damage, increased superoxide production, decreased ATP production and increased mitochondrial apoptosis, which was inhibited by the lysine 301 to alanine mutation (K301A). Furthermore, we performed neuron-specific overexpression of S1-OPA1 in the cerebral cortex around ischemia of middle cerebral artery occlusion/reperfusion (MCAO/R) mice. The results further demonstrated in vivo that S1-OPA1 exacerbated neuronal mitochondrial ultrastructural destruction and injury induced by cerebral ischemia-reperfusion, while S1-OPA1-K301 overexpression had no effect. In conclusion, ischemia induced neuronal OMA1-mediated cleavage of OPA1 at the S1 site. S1-OPA1 aggravated neuronal mitochondrial fragmentation and damage in a GTPase-dependent manner, and participated in neuronal ischemia-reperfusion injury.Subject terms: Stroke, Cell death in the nervous system  相似文献   

6.
Objective: To investigate whether the intermittent hypothermia (IH) protects neurons against ischemic insult and the potential molecular targets using an in vitro ischemic model of oxygen glucose deprivation (OGD).Methods: Fetal rat cortical neurons isolated from Day E18 rat embryos were subjected to 90-min OGD and hypothermia treatments during reoxygenation before examining the changes in microscopic morphology, cell viability, microtubule- associated protein 2 (MAP-2) release, intracellular pH value and calcium, reactive oxygen species (ROS) generation, mitochondrial membrane potential (△Ψm) and neuronal death using cell counting kit (CCK-8), enzyme-linked immunosorbent assay (ELISA), BCECF AM, Fluo-3 AM, DCFH-DA and dihydroethidium (DHE), JC-1 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively.Results: 90-min OGD induced morphologic abnormalities, cell viability decline, MAP-2 release, intracellular acidosis, calcium overload, increased ROS generation, △Ψm decrease and cell death in primary neurons, which was partially inhibited by continuous hypothermia (CH) and intermittent hypothermia (IH). Interestingly, 6-h CH was insufficient to reduce intracellular calcium overload and stabilize mitochondrial membrane potential (△Ψm), while 12-h CH was effective in reversing the above changes. All IH treatments (6×1 h, 4×1.5 h or 3×2 h) effectively attenuated intracellular free calcium overload, inhibited ROS production, stabilized mitochondrial membrane potential (△Ψm) and reduced delayed cell death in OGD-treated cells. However, only IH intervals longer than 1.5 h appeared to be effective in preventing cell viability loss and intracellular pH decline.Conclusion: Both CH and IH were neuroprotective in an in vitro model of ischemic stroke, and in spite of shorter hypothermia duration, IH could provide a comparable neuroprotection to CH.  相似文献   

7.
ABSTRACT

MiR-1306-5p is involved in the progression of acute heart failure, but its role in ischemic stroke remains unclear. Here, SH-SY5Y cells were exposed to oxygen–glucose deprivation (OGD) for 4, 8, and 12 h, respectively, and then reoxygenation for 12 h to construct OGD/R induced cell injury model. Cell viability, cell death, and cell apoptosis were assessed with CCK-8 assay, LDH assay, ?ow cytometry, and caspase-3 activity assay. The target gene of miR-1306-5p was confirmed by luciferase reporter assay. We found miR-1306-5p expression was significantly down-regulated in OGD/R-induced SH-SY5Y cell model. Moreover, miR-1306-5p protected SH-SY5Y cell against OGD/R-induced injury. Mechanistically, Bcl2-interacting killer (BIK) was the direct target gene of miR-1306-5p. Furthermore, BIK knockdown mimicked, while overexpression reversed the protective effects of miR-1306-5p against OGD/R induced injury. Our findings thus provide an experimental basis miR-1306-5p targeting BIK-based therapy for cerebral I/R injury.  相似文献   

8.
《Autophagy》2013,9(6):738-753
The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.  相似文献   

9.
Brain ischemic tolerance is a protective mechanism induced by a preconditioning stimulus, which prepare the tissue against harmful insults. Preconditioning with N-methyl-d-aspartate (NMDA) agonists induces brain tolerance and protects it against glutamate excitotoxicity. Recently, the glycine transporters type 1 (GlyT-1) have been shown to potentiate glutamate neurotransmission through NMDA receptors suggesting an alternative strategy to protect against glutamate excitotoxicity. Here, we evaluated the preconditioning effect of sarcosine pre-treatment, a GlyT-1 inhibitor, in rat hippocampal slices exposed to ischemic insult. Sarcosine (300mg/kg per day, i.p.) was administered during seven consecutive days before induction of ischemia in hippocampus by oxygen/glucose deprivation (OGD). To access the damage caused by an ischemic insult, we evaluated cells viability, glutamate release, nitric oxide (NO) production, lactate dehydrogenase (LDH) levels, production of reactive oxygen species (ROS), and antioxidant enzymes as well as the impact of oxidative stress in the tissue. We observed that sarcosine reduced cell death in hippocampus submitted to OGD, which was confirmed by reduction on LDH levels in the supernatant. Cell death, glutamate release, LDH levels and NO production were reduced in sarcosine hippocampal slices submitted to OGD when compared to OGD controls (without sarcosine). ROS production was reduced in sarcosine hippocampal slices exposed to OGD, although no changes were found in antioxidant enzymes activities. This study demonstrates that preconditioning with sarcosine induces ischemic tolerance in rat hippocampal slices submitted to OGD.  相似文献   

10.
AimsWe previously reported that cysteinyl leukotriene receptor 2 (CysLT2) mediates ischemic astrocyte injury, and leukotriene D4-activated CysLT2 receptor up-regulates the water channel aquaporin 4 (AQP4). Here we investigated the mechanism underlying CysLT2 receptor-mediated ischemic astrocyte injury induced by 4-h oxygen-glucose deprivation and 24-h recovery (OGD/R).Main methodsPrimary cultures of rat astrocytes were treated by OGD/R to construct the cell injury model. AQP4 expression was inhibited by small interfering RNA (siRNA). The expressions of AQP4 and CysLTs receptors, and the MAPK signaling pathway were determined.Key findingsOGD/R induced astrocyte injury, and increased expression of the CysLT2 (but not CysLT1) receptor and AQP4. OGD/R-induced cell injury and AQP4 up-regulation were inhibited by a CysLT2 receptor antagonist (Bay cysLT2) and a non-selective CysLT receptor antagonist (Bay u9773), but not by a CysLT1 receptor antagonist (montelukast). Knockdown of AQP4 by siRNA attenuated OGD/R injury. Furthermore, OGD/R increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the cell injury and AQP4 up-regulation.SignificanceThe CysLT2 receptor mediates AQP4 up-regulation in astrocytes, and up-regulated AQP4 leads to OGD/R-induced injury, which results from activation of the ERK1/2 and p38 MAPK pathways.  相似文献   

11.
Thrombin is involved in mediating neuronal death in cerebral ischemia. We investigated its so far unknown mode of activation in ischemic neural tissue. We used an in vitro approach to distinguish the role of circulating coagulation factors from endogenous cerebral mechanisms. We modeled ischemic stroke by subjecting rat organotypic hippocampal slice cultures to 30-min oxygen (5%) and glucose (1 mmol/L) deprivation (OGD). Perinuclear activated factor X (FXa) immunoreactivity was observed in CA1 neurons after OGD. Selective FXa inhibition by fondaparinux during and after OGD significantly reduced neuronal death in the CA1 after 48 h. Thrombin enzyme activity was increased in the medium 24 h after OGD and this increase was prevented by fondaparinux suggesting that FXa catalyzes the conversion of prothrombin to thrombin in neural tissue after ischemia in vitro . Treatment with SCH79797, a selective antagonist of the thrombin receptor protease-activated receptor-1 (PAR-1), significantly decreased neuronal cell death indicating that thrombin signals ischemic damage via PAR-1. The c-Jun N-terminal kinase (JNK) pathway plays an important role in excitotoxicity and cerebral ischemia and we observed activation of the JNK substrate, c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonist SCH79797, decreased the level of phospho-c-Jun Ser73. These results indicate that FXa activates thrombin in cerebral ischemia, which leads via PAR-1 to the activation of the JNK pathway resulting in neuronal death.  相似文献   

12.
Pharmacological compounds that release nitric oxide (NO) have been recognized as the potential therapeutic agents for acute stroke. (S)-ZJM-289 is a novel NO-releasing derivative of 3-n-butylphthalide (NBP) with enhanced anti-platelet and anti-thrombotic actions. The present study was performed to investigate the neuroprotective effects and related mechanisms of (S)-ZJM-289 on ischemic neuronal injury in vitro and in vivo. Primary cortical neuronal cultures were exposured to oxygen-glucose deprivation followed by recovery (OGD/R), a model of ischemia-like injury, and treated with (S)-ZJM-289 before OGD. In vitro results showed that (S)-ZJM-289 attenuated OGD/R-induced neuronal injury, which was associated with the maintenance of mitochondrial integrity and function by alleviating intracellular calcium overload and reactive oxygen species (ROS) accumulation, preventing mitochondrial membrane depolarization and preserving respiratory chain complexes activities. Moreover, (S)-ZJM-289 treatment suppressed mitochondrial release of cytochrome c (cyt c) and nuclear translocation of apoptosis-inducing factor (AIF), thereby blocking mitochondria-mediated cell death, which may be partially mediated by up-regulation of Hsp70. The neuroprotection by (S)-ZJM-289 was also studied using a model of middle cerebral artery occlusion (MCAO). Oral administration of (S)-ZJM-289 at the onset of reperfusion for 3d significantly reduced the brain infarct size, improved neurological deficit and prevented neuronal loss and apoptosis. In current study, (S)-ZJM-289 appears to be more potent in ischemic neuroprotection than NBP, in particular at the lower doses, which may be due to the synergistic action of NBP and NO. These findings point to that (S)-ZJM-289 could be an attractive alternative to NBP in preventing the process of ischemia/reperfusion (I/R) injury.  相似文献   

13.
BackgroundOxidative stress and frequently unwanted alterations in mitochondrial structure and function are key aspects of the pathological cascade in transient focal cerebral ischemia. Chikusetsu saponin V (CHS V), a major component of saponins from Panax japonicas, can attenuate H2O2-induced oxidative stress in SH-SY5Y cells.PurposeThe aim of the present study was to investigate the neuroprotective effects and the possible underlying mechanism of CHS V on transient focal cerebral ischemia/reperfusion.MethodsMice with middle cerebral artery occlusion (MCAO) and cultured cortical neurons exposed to oxygen glucose deprivation (OGD) were used as in vivo and in vitro models of cerebral ischemia, respectively. The neurobehavioral scores, infarction volumes, H&E staining and some antioxidant levels in the brain were evaluated. The occurrence of neuronal death was estimated. Total and mitochondrial reactive oxygen species (ROS) levels, as well as mitochondrial potential were measured using flow cytometry analysis. Mitochondrial structure and respiratory activity were also examined. Protein levels were investigated by western blotting and immunohistochemistry.ResultsCHS V effectively attenuated cerebral ischemia/reperfusion (CI/R) injury, including improving neurological deficits, shrinking infarct volume and reducing the number of apoptotic cells. Furthermore, CHS V treatment remarkably increased antioxidant levels and reduced ROS levels and mitochondrial damage by enhancing the expression and deacetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by activating AMPK and SIRT-1, respectively.ConclusionOur data demonstrated that CHS V prevented CI/R injury by suppressing oxidative stress and mitochondrial damage through the modulation of PGC-1α with AMPK and SIRT-1.  相似文献   

14.
TRPM7, a divalent cation channel, plays an important role in neurons damaged from cerebral ischemia due to permitting intracellular calcium overload. This study aimed to explore whether magnesium was transported via a TRPM7 channel into the intracellular space of rat hippocampal neurons after 1 h of oxygen-glucose deprivation (OGD) and acute chemical ischemia (CI) by using methods of the Mg(2+) fluorescent probe Mag-Fura-2 to detect intracellular magnesium concentration ([Mg(2+)](i)) and flame atomic absorption spectrometry to measure extracellular magnesium concentration ([Mg(2+)](o)). The results showed that the neuronal [Mg(2+)](i) was 1.51-fold higher after 1 h of OGD at a basal level, and the increase of neuronal [Mg(2+)](i) reached a peak after 1 h of OGD and was kept for 60 min with re-oxygenation. Meanwhile, the [Mg(2+)](o) decreased after 1 h of OGD and recovered to the pre-ischemic level within 15 min after re-oxygenation. In the case of CI, the [Mg(2+)](i) peak immediately appeared in hippocampal neurons. This increase of [Mg(2+)](i) declined by removing extracellular magnesium in OGD or CI. Furthermore, by using Gd(3+) or 2-aminoethoxydiphenyl borate to inhibit TRPM7 channels, the [Mg(2+)](i) increase, which was induced by OGD or CI, was attenuated without altering the basal level of [Mg(2+)](i). By silencing TRPM7 with shRNA in hippocampal neurons, it was found that not only was the increase of [Mg(2+)](i) induced by OGD or CI but also the basal levels of [Mg(2+)](i) were attenuated. In contrast, overexpression of TRPM7 in HEK293 cells exaggerated both the basal levels and increased [Mg(2+)](i) after 1 h of OGD/CI. These results suggest that anoxia induced the increase of [Mg(2+)](i) via TRPM7 channels in rat hippocampal neurons.  相似文献   

15.
BackgroundArctium lappa L. roots are very popular cultivated vegetables, which possesses various pharmacological activities. Our previous studies have demonstrated that Arctium lappa L. roots exerted protective effects against H2O2, glutamate and N-methyl-D-aspartic acid (NMDA)-induced neuronal injury in vitro. However, whether Arctium lappa L. roots could prevent against cerebral ischemia and the underlying mechanism remain unclear.PurposeThe objective of the present study was to investigate the neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) and the active ingredient 4,5-O-dicaffeoyl-1-O-[4-malic acid methyl ester]-quinic acid (DCMQA) in EAL against cerebral ischemia and explore the underlying mechanism.Study DesignThe neuroprotective effects of EAL and DCMQA were investigated in rats with permanent middle cerebral artery occlusion (MCAO) and in oxygen glucose deprivation/reoxygenation (OGD/R)-stimulated SH-SY5Y cells, respectively.MethodsThe infarct volume, brain edema and neurological deficits were measured following MCAO. TUNEL and Nissl staining were performed to detect neuronal loss and apoptosis of neurons in rat brains. Cell survival was measured by MTT and LDH assay. In addition, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels were determined by DCFH-DA and JC-1 fluorescent probe, respectively. Hoechst 33342 staining and Annexin V-FITC/PI double staining were performed to evaluate neuronal apoptosis. The expression levels of proteins were evaluated by western blot.ResultsEAL reduced brain infarct volume, ameliorated brain edema and improved neurological deficits in MCAO rats. In addition, EAL inhibited oxidative stress and inflammatory responses following MCAO. Besides, active compound DCMQA alleviated cytotoxicity as well as inhibited over-production of intracellular ROS and loss of MMP induced by OGD/R in SH-SY5Y cells. Moreover, EAL and DCMQA inhibited apoptosis by decreasing the expressions of pro-apoptotic proteins including bax, cytochrome c and cleaved caspase-3 while promoting the bcl-2 expression in MCAO rats and OGD/R-stimulated neurons, respectively. In addition, DCMQA suppressed the production of autophagosomes and down-regulated expression of Beclin 1 and LC3. Furthermore, inhibiting AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway contributed to DCMQA-mediated suppression of autophagy induced by OGD/R.ConclusionOur findings demonstrate that Arctium lappa L. roots protect against cerebral ischemia through inhibiting apoptosis and AMPK/mTOR-mediated autophagy in vitro and in vivo, providing a theoretical basis for the development of CQAs in Arctium lappa L. roots as neuroprotective drugs for the prevention and treatment of ischemic stroke.  相似文献   

16.
Brain edema induced by in vitro ischemia: causal factors and neuroprotection   总被引:15,自引:0,他引:15  
Decreased cerebral blood flow, hence decreased oxygen and glucose, leads to ischemic brain injury via complex pathophysiological events, including excitotoxicity, mitochondrial dysfunction, increased intracellular Ca2+, and reactive oxygen species (ROS) generation. Each of these could also contribute to cerebral edema, which is the primary cause of patient mortality after stroke. In vitro brain slices are widely used to study ischemia. Here we introduce a slice model to investigate ischemia-induced edema. Significant water gain was induced in coronal slices of rat brain by 5 min of oxygen and glucose deprivation (OGD) at 35 degrees C, with progressive edema formation after return to normoxic, normoglycemic medium. Edema increased with increasing injury severity, determined by OGD duration (5-30 min). Underlying factors were assessed using glutamate-receptor antagonists (AP5/CNQX), blockade of mitochondrial permeability transition [cyclosporin A (CsA) versus FK506], inhibition of Na+/Ca2+ exchange (KB-R7943), and ROS scavengers (ascorbate, Trolox, dimethylthiourea, Tempol). All agents except KB-R7943 and FK506 significantly attenuated edema when applied after OGD; KB-R7943 was effective when applied before OGD. Significantly, complete prevention of ischemia-induced edema was achieved with a cocktail of AP5/CNQX, CsA and Tempo applied after OGD, which demonstrates the involvement of multiple, additive mechanisms. The efficacy of this cocktail further shows the potential value of combination therapies for the treatment of cerebral ischemia.  相似文献   

17.
Overexpression of copper/zinc superoxide dismutase (SOD1) in transgenic mice protects from transient focal cerebral ischemia in adult animals, but increases oxidative injury in perinatal mice. The effect of SOD1 overexpression on astrocytes subjected to ischemia-like insults has not yet been determined. Overexpression of human SOD1 in astrocytes resulted in a 3-fold increase in SOD1 activity without coupled up-regulation of catalase or glutathione peroxidase activities. Cells subjected to oxygen-glucose deprivation (OGD) or glucose deprivation to mimic ischemic injury were protected by SOD1 overexpression. OGD injury was reduced 47.6+/-9.3%, assessed by release of lactate dehydrogenase. OGD also caused a significant increase in catalase activity which was moderated by SOD1 overexpression. The level of glutathione in astrocytes overexpressing SOD1 was maintained at higher levels following 5 h OGD compared to control cultures under the same conditions. Reduction of glutathione prior to OGD significantly increased cell death of SOD1-overexpressing astrocytes as well as controls, but SOD1 still provided significant protection, suggesting that both GSH-dependent scavenging and GSH-independent scavenging are relevant to SOD1 protection in astrocytes.  相似文献   

18.
目的:探讨线粒体CB1受体(mitochondrial cannabinoid receptor1,mtCB1)在大鼠海马神经元缺氧复氧损伤中对线粒体分裂的影响。方法:原代培养新生的Wistar大鼠海马神经元,将培养至第8天的海马神经元采用随机数字表分为5组(n=60):正常组(N组):正常培养,不做任何处理;缺氧复氧组(H/R组):采用氧糖剥夺法构建海马神经元缺氧复氧损伤模型,缺氧6h,复氧20 h;缺氧复氧组+ACEA+AM251组(H/R+ACEA+AM251组):缺氧6 h结束后立即加入ACEA和AM251,终浓度分别为1μmol/L、10μmol/L,复氧20 h;缺氧复氧+ACEA+Hemopressin(H/R+ACEA+Hemo组):缺氧6h结束后立即加入ACEA和Hemopressin,终浓度分别为1μmol/L、10μmol/L,复氧20 h;缺氧复氧+赋形剂组(H/R+V组):同样于缺氧6h结束后立即加入二甲基亚砜(DMSO),终浓度0.1%,复氧20 h。使用激光共聚焦显微镜检测细胞内Ca~(2+)的浓度,流式细胞仪检测细胞凋亡率,Western blot检测凋亡诱导因子(AIF)、线粒体分裂相关蛋白Drp1、Fis1,细胞凋亡相关蛋白细胞色素C(Cytc)和Rho相关的卷曲蛋白激酶1(ROCK1)的表达。结果:与N组相比,H/R组、H/R+ACEA+AM251组、H/R+ACEA+Hemo组和H/R+V组的细胞内Ca~(2+)浓度、细胞凋亡率、以及AIF、Drp1、Fis1、Cytc、ROCK1蛋白的表达水平均明显增加(P0.05);与H/R组相比,H/R+ACEA+Hem组上述各检测指标明显降低(P0.05),H/R+ACEA+AM251组和H/R+V组各指标比较差异无统计学意义(P0.05)。结论:线粒体CB1受体(mtCB1受体)可能通过降低细胞内ROS的含量来减少细胞内Ca~(2+)浓度和ROCK1的表达,进而抑制线粒体分裂,并最终减轻海马神经元缺氧复氧损伤。  相似文献   

19.
βII spectrin (β2SP) is encoded by Sptbn1 and is involved in the regulation of various cell functions. β2SP contributes to the formation of the myelin sheath, which may be related to the mechanism of neuropathy caused by demyelination. As one of the main features of cerebral ischemia, demyelination plays a key role in the mechanism of cerebral ischemia injury. Here, we showed that β2SP levels were increased, and this molecule interacted with TET2 after ischemic injury. Furthermore, we found that the level of TET2 was decreased in the nucleus when β2SP was knocked out after oxygen and glucose deprivation (OGD), and the level of 5hmC was reduced in the OGD+β2SP KO group. In contrast, the expression of β2SP did not change in TET2 KO mice. In addition, the 5hmC sequencing results revealed that β2SP can affect the level of 5hmC, the differentially hydroxymethylated region (DhMR) mainly related with the Calcium signalling pathway, cGMP-PKG signalling pathway, Wnt signalling pathway and Hippo signalling pathway. In summary, our results suggest that β2SP could regulate the gene 5hmC by interacted with TET2 and will become a potential therapeutic target for ischemic stroke.  相似文献   

20.
Oxidative stress is a great challenge to neurons following cerebral ischemia. PGC-1α has been shown to act as a potent modulator of oxidative metabolism. In this study, the effects of ZLN005, a small molecule that activate PGC-1α, against oxygen–glucose deprivation (OGD)- or ischemia-induced neuronal injury in vitro and in vivo were investigated. Transient middle cerebral artery occlusion (tMCAO) was performed in rats and ZLN005 was administered intravenously at 2 h, 4 h, or 6 h after ischemia onset. Infarct volume and neurological deficit score were detected to evaluate the neuroprotective effects of ZLN005. Well-differentiated PC12 cells, which were subjected to OGD for 2 h followed by reoxygenation for 22 h, were used as an in vitro ischemic model. Changes in expression of PGC-1α, its related genes, and antioxidant genes were determined by real-time quantitative PCR. The results showed that ZLN005 reduced cerebral infarct volume and improved the neurological deficit in rat with tMCAO, and significantly protected OGD-induced neuronal injury in PC12 cells. Furthermore, ZLN005 enhanced expression of PGC-1α in PC12 cells and in the ipsilateral hemisphere of rats with tMCAO. Additionally, ZLN005 increased antioxidant genes, including SOD1 and HO-1, and significantly prevented the ischemia-induced decrease in SOD activity. Taking together, the PGC-1α activator ZLN005 exhibits neuroprotective effects under ischemic conditions and molecular mechanisms possibly involve activation of PGC-1α signaling pathway and cellular antioxidant systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号