首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Thioctic acid (TA) and its reduced form dihydrolipoic acid (DHLA) have recently gained somc recognition as useful biological antioxidants. In particular, the ability of DHLA to inhibit lipid peroxidation has been reported. In the present study, the effects of TA and DHLA on reactive oxygen species (ROS) generated in the aqueous phase have been investigated. Xanthine plus xanthine oxidase-generated superoxide radicals (O2), detected by electron spin resonance spectroscopy (ESR) using DMPO as a spin trap. were eliminated by DHLA but not by TA. The sulhydryl content of DHLA, measured using Ellman's reagent decreased subsequent to the incubation with xanthine plus xanthine oxidase confirming the interaction between DHLA and O2-. An increase of hydrogen peroxide concentration accompanied the reaction between DHLA and O2x, suggesting the reduction of O2- by DHLA. Competition of O2- with epinephrine allowed us to estimate a second order kinetic constant of the reaction between O2- and DHLA, which was found to be a 3.3 × 105 M-1 s-1. On the other hand, the DMPO signal of hydroxyl radicals (HO ·) generated by Fenton's reagent were eliminated by both TA and DHLA. Inhibition of the Fenton reaction by TA was confirmed by a chemiluminescence measurement using luminol as a probe for HO ·. There was no electron transfer from Fe2+ to TA or from DHLA to Fe3 + detected by measuring the Fe2+ -phenanthroline complex. DHLA did not potentiate the DMPO signal of HO · indicating no prooxidant activity of DHLA. These results suggest that both TA and DHLA possess antioxidant properties. In particular. DHLA is very effective as shown by its dual capability by eliminating both O2-; and HO ·.  相似文献   

2.
The relationships between structure and antioxidant activity of dihydrolipoic acid (DHLA) were studied using homologues of DHLA: bisonor-DHLA (a derivative which lacks two carbons in the hydrophobic tail), tetranor-DHLA (which lacks four carbons) and a methyl ester derivative. It was observed that: i) DHLA homologues with shorter hydrocarbon tails (i.e., bisnor- and tetranor-DHLA) had greater ability to quench superoxide radicals (O-2); ii) no differences among homologues with different chain lengths were found for peroxyl radical (ROO) scavenging in aqueous solution, and iii) DHLA was the best membrane antioxidant in terms of ROO scavening and lipid peroxidation inhibition. Differences among the DHLA homologues in their antioxidant properties in polar and apolar environments generally agreed with differences in their partition coefficients. The methyl ester was the least effective antioxidant both in aqueous phase and in membranes. Tetranor-DHLA was found not only to be less effective in preventing ROO-induced lipid peroxidation, but also to induce lipid peroxidation in the presence of residual iron. Thus, the complexity of biological systems seems to complicate generalizations on the correlation of molecular structure with antioxidant activity of DHLA.  相似文献   

3.
An effort has been made to assess the role of reactive oxygen species in germination and subsequent growth of Amaranthus lividus under elevated temperature. Transfer of A. lividus seeds from 25 to 45 °C for 4, 8 and 12 h, during early imbibitional period reduced percentage of germination, relative germination performance, relative growth index and seedling length. Heat shock during early germination decreased also the activities of free radical scavenging enzymes like catalase, peroxidase and superoxide dismutase, increased the accumulation of superoxide, hydrogen peroxide and induced lipoxygenase mediated membrane lipid peroxidation. Membrane injury index and relative leakage ratio revealed a rise with concomitant reduction in membrane protein thiol content in heat shock raised seedlings. The results indicate that heat shock in A. lividus seeds induced an excessive generation of ROS and led to an oxidative membrane damage, causing early growth impairment.  相似文献   

4.
《Free radical research》2013,47(1):633-638
The purpose of our present study is the possible implication of oxygen free radicals in the respiratory distress induced in rats by intravenous administration of arachidonic acid (20mg/kg). The respiratory frequency was measured and plasma TXB2 concentration was assayed by RIA from blood withdrawn I min after arachidonic acid administration. The substances studied were: SOD, catalase, manifold, DMSO, BHT, imidazole. All the drugs, except imidazole, significantly protect the rats from the respiratory distress induced by arachidonic acid. SOD, catalase, BHT and imidatole inhibit whereas mannitol and DMSO increase the plasma levels of TXB2. We suggest that oxygen free radicals generated in the respiratory burst induced by arachidonic acid are mainly responsible for the consequent respiratory distress.  相似文献   

5.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

6.
Carnosic acid, an antioxidant extracted from rosemary, is shown to produce radicals when in contact with oxidized methyl oleate in the absence of air above 50°C. Two radical species are formed: the first one, stable up to -110°C, is an hydroxy-phenoxy radical whose ESR spectrum was analyzed by studying its temperature dependence and its sensitivity to deuterium/proton exchange. The second species was observed above 110°C, its ESR spectrum was identical to the spectrum obtained when carnosol, another antioxidant extracted from rosemary, was heated at the same temperature in the presence of oxidized lipid. This observation is probably due to the transformation of carnosic acid into carnosol; the analysis of the corresponding ESR spectrum suggests the formation of a keto phenoxy radical exhibiting a great delocalization of the unpaired electron.  相似文献   

7.
Dihydrocalcein (H2-calcein) is recommended as a superior probe for intracellular radical (ROS) detection as different to dichlorodihydrofluorescein (H2-DCF), its oxidation product calcein is thought not to leak out of cells. We determined whether H2-calcein is a useful tool to measure ROS in vascular smooth muscle cells. In vitro, both compounds were oxidized by peroxynitrite, hydroxyl radicals and peroxidase, but not hydrogen peroxide or nitric oxide. The intracellular half-life of calcein was several hours whereas that of DCF was approximately 5?min. Intracellular ROS, as generated by the angiotensin II (Ang II)-activated NADPH oxidase, did not increase the oxidation of H2-calcein but increased the oxidation of H2-DCF by approximately 50%. Similar changes were detected using electron spin resonance spectroscopy. Inhibition of the NADPH oxidase using gp91ds-tat prevented the Ang II-induced increase in DCF fluorescence, without affecting cells loaded with H2-calcein. Diphenylene iodonium (DPI), which inhibits all flavin-dependent enzymes, including those in the respiratory chain, had little effect on the basal but prevented the Ang II-induced oxidation of H2-DCF. In contrast, DPI inhibited H2-calcein oxidation in non-stimulated cells by almost 50%. Blockade of respiratory chain complex I inhibited H2-calcein oxidation, whereas inhibitors of complex III were without effect. Calcein accumulated in the mitochondria, whereas DCF was localized in the cytoplasm. In submitochondrial particles, H2-calcein, but not H2-DCF inhibited complex I activity.

These observations indicate that H2-DCF is an indicator for intracellular ROS, whereas the oxidation of H2-calcein most likely occurs as a consequence of direct electron transfer to mitochondrial complex I.  相似文献   

8.
The effects of methylprednisolone (MP) on the acute airway and pulmonary vascular responses induced by reactive oxygen species (ROS) were investigated in isolated, plasma-perfused rat lungs. ROS were generated by adding xanthine oxidase and hypoxan-thine to the perfusate. MP was administered in 3 different ways: 1. Added to the perfusate (1 mg*ml-1) 5 min prior to xanthine oxidase and hypoxanthine, 2. Given as intraperitoneal injections (40 mg*kg-1) to lung donor rats 12 and 2 hours prior to the experiments, or 3. Combining 1 and 2. The lungs were perfused at constant volume inflow (15 ml*min-1). Pulmonary arterial pressure and transpulmonary pressure were followed for 30 min after addition of xanthine oxidase and hypoxanthine. ROS induced a powerful, acute broncho- and vasoconstriction, which was inhibited by addition of MP to the perfusate. Pretreatment with MP also inhibited the vascular and airway responses. Adding MP to the perfusate of pretreated lungs further reduced the ROS-induced smooth muscle constriction. In conclusion, MP inhibits vasoconstriction and bronchocon-striction induced by ROS in isolated rat lungs.  相似文献   

9.
Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O 2 ,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a leakage of absorbed light energy from the photosynthetic electron transport chain. Cold temperatures slow the energy-consuming Calvin-Benson Cycle enzymes more than the energy-transducing light reactions, thus causing leakage of energy to oxygen. ROS and MDA are removed, in part, by the action of antioxidant enzymes of the Halliwell/Foyer/Asada Cycle. Chloroplasts also contain high levels of both lipid- and water-soluble antioxidants that act alone or in concert with the HFA Cycle enzymes to scavenge ROS. The ability of chilling-resistant plants to maintain active HFA Cycle enzymes and adequate levels of antioxidants in the cold and light contributes to their ability to resist chilling-enhanced photooxidation. The absence of this ability in chilling-sensitive species makes them susceptible to chilling-enhanced photooxidation. Chloroplasts may reduce the generation of ROS by dissipating the absorbed energy through a number of quenching mechanisms involving zeaxanthin formation, state changes and the increased usage of reducing equivalents by other anabolic pathways found in the stroma. During chilling in the light, ROS produced in chilling-sensitive plants lower the redox potential of the chloroplast stroma to such a degree that reductively-activated regulatory enzymes of the Calvin Cycle, sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) and fructose 1,6 bisphosphatase (EC 3.1.3.11), are oxidatively inhibited. This inhibition is reversible in vitro with a DTT treatment indicating that the enzymes themselves are not permanently damaged. The inhibition of SBPase and FBPase may fully explain the inhibition in whole leaf gas exchange seen upon the rewarming of chilling-sensitive plants chilled in the light. Methods for the study of ROS in chilling-enhanced photooxidation and challenges for the future are discussed.Abbreviations ASP ascorbate-specific peroxidase - -TH reduced -tocopherol - DTT dithiothreitol - FBP fructose 1,6 bisphosphate - FBPase fructose 1,6 bisphosphatase (EC 3.1.3.11) - HFA Cycle the Halliwell/Foyer/Asada Cycle responsible for the enzymatic removal of ROS in the chloroplast stroma - MDA monodehydroascorbate radical - MDAR monodehydroascorbate reductase - ROS reactive oxygen species - SBP sedohepulose 1,7 bisphosphate - SBPase sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) - SOD superoxide dismutase  相似文献   

10.
海金沙草多糖的提取及抗氧化活性(英文)   总被引:1,自引:0,他引:1  
用响应面优化技术研究了提取时间、固液比、提取温度等对海金沙草粗多糖提取的定量影响,获得了提取工艺的最优工艺参数:提取时间为123.3 min,固液比(s/w)为1∶20.9,提取温度为49.9℃,二阶多项式曲线回归模型预测多糖产量为12.466%,多糖提取验证试验结果(提取率)为12.85±0.18%(n=3),比模型预测稍高。多糖经纯化并进行体外抗氧化活性研究(以维生素C为对照品),结果发现,多糖产物对超氧阴离子(O2–.)和羟基氧自由基(.OH)具有较好的清除作用。  相似文献   

11.
Oleic acid (OA), a monounsaturated fatty acid (MUFA), has previously been shown to reverse saturated fatty acid palmitic acid (PA)-induced hepatic insulin resistance (IR). However, its underlying molecular mechanism is unclear. In addition, previous studies have shown that eicosapentaenoic acid (EPA), a ω-3 polyunsaturated fatty acid (PUFA), reverses PA-induced muscle IR, but whether EPA plays the same role in hepatic IR and its possible mechanism involved need to be further clarified. Here, we confirmed that EPA reversed PA-induced IR in HepG2 cells and compared the proteomic changes in HepG2 cells after treatment with different free fatty acids (FFAs). A total of 234 proteins were determined to be differentially expressed after PA+OA treatment. Their functions were mainly related to responses to stress and endogenous stimuli, lipid metabolic process, and protein binding. For PA+EPA treatment, the PA-induced expression changes of 1326 proteins could be reversed by EPA, 415 of which were mitochondrial proteins, with most of the functional proteins involved in oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Mechanistic studies revealed that the protein encoded by JUN and reactive oxygen species (ROS) play a role in OA- and EPA-reversed PA-induced IR, respectively. EPA and OA alleviated PA-induced abnormal adenosine triphosphate (ATP) production, ROS generation, and calcium (Ca2+) content. Importantly, H2O2-activated production of ROS increased the protein expression of JUN, further resulting in IR in HepG2 cells. Taken together, we demonstrate that ROS/JUN is a common response pathway employed by HepG2 cells toward FFA-regulated IR.  相似文献   

12.
超氧化物岐化酶(SOD)和过氧化物酶(POD)是机体内重要的抗氧化酶系之一,其作用在于消除体内的自由基,防止自由基对细胞结构的损伤。它们的活性随增龄而下降,因此自由基不断损伤细胞结构,累积最终导致细胞衰亡和动物机体衰老,老龄小鼠服用DNA一段时间后,其体内SOD和POD的活性均显著提高,因而其衰老速度可能得到一定程度的延缓。  相似文献   

13.
Gossypol, a polyphenolic compound found in cotton plants, has many potential uses, including use as a male antifertility drug and spermicide. Gossypol affects a variety of cell processes and many of these effects may be explained by a common underlying mechanism. Here we report that gossypol promotes the formation of oxygen radicals when incubated with rat liver microsomes and human sperm suggesting that oxygen radical production may be the underlying basis of its biological activity.  相似文献   

14.
Generation of reactive oxygen species (ROS) in synaptosomes was investigated in the presence of different substrates. When pyruvate was used as a substrate an increased rate of hydrogen peroxide formation was detected by the Amplex Red fluorescent assay, but aconitase, which is known to be a highly sensitive enzyme to ROS was not inhibited. In contrast, pyruvate exerted a partial protection on aconitase against a time-dependent inactivation that occurred when synaptosomes were incubated in the absence of substrates. Disruption of synaptosomal membranes with Triton X-100 prevented the protective effect of pyruvate. It is suggested that citrate and/or isocitrate formed in the metabolism of pyruvate could be responsible for a partial protection of aconitase. Therefore while pyruvate could have a prooxidant effect it could also exert a protective effect on the aconitase. Special issue dedicated to Dr. Bernd Hamprecht.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号