首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to define the parameters in amphiphilic molecules important for their interaction with the erythrocyte membrane, the effects of cationic, anionic, zwitterionic and nonionic amphiphilic agents (C10-C16) on osmotic fragility and transport of potassium and phosphate in human erythrocytes were studied. All the amphiphiles protected the erythrocytes against hypotonic haemolysis. Half-maximum protection occurred at a concentration which was about 15% of that inducing 50% haemolysis. The concentrations of amphiphiles required to induce protection or haemolysis were related to the length of the alkyl chain in a way indicating that a membrane/aqueous phase partition is the mechanism whereby the amphiphile monomers intercalate into the membrane. At antihaemolytic concentrations all the amphiphiles increased potassium efflux and passive potassium influx. The increase in the fluxes was about the same in both directions through the membrane and there were no clear differences in the effects of the different amphiphilic derivatives at equi-protecting concentrations. Active potassium influx was decreased by cationic, zwitterionic and non-ionic amphiphiles. The ability of the amphiphiles to inhibit the influx was not related to the length of the alkyl chain. Anionic amphiphiles had no or only a weak stimulatory effect on the influx. Phosphate efflux was reduced by all the amphiphiles. The inhibitory potency of the different amphiphiles decreased in the following order; anionic greater than zwitterionic, non-ionic greater than cationic. Short-chained amphiphiles were more potent inhibitors than long-chained. The possible participation of non-bilayer phases (mixed inverted micelles) in the intercalation of amphiphiles into the membrane is discussed.  相似文献   

2.
The interactions of octaethyleneglycol alkylethers (C10-C16), pentaethyleneglycol dodecylether, and dodecyl D-maltoside with the human erythrocyte membrane were studied. All the amphiphiles protected erythrocytes against hypotonic haemolysis. At concentrations where the amphiphiles protected erythrocytes against hypotonic haemolysis they reduced phosphate efflux. The potency of the amphiphiles, at equiprotecting concentrations, was correlated negatively to the length of the alkyl chain. Potassium fluxes were increased by all the amphiphiles at protective concentrations. The relative potency of the amphiphiles varied but it was not simply related to the length of the alkyl chain. The only amphiphile affecting active potassium influx was octaethyleneglycol decylether which induced a slight decrease. It is concluded that the increase in passive cation fluxes caused by the amphiphiles is due to an increased permeability of the lipid bilayer induced through a nonspecific interaction of the amphiphiles with the bilayer. The effect of the amphiphiles on ion transport mediated by membrane proteins is proposed to be due to an alteration of the state of the transporting protein.  相似文献   

3.
Gemini (dimeric) surfactant perturbation of the human erythrocyte   总被引:1,自引:0,他引:1  
We studied the ability of di-cationic gemini surfactantsdi (amphiphiles), i.e. 1,4-butanediammonium-N,N-dialkyl-N,N,N',N'-tetramethyl bromides (Di-Cm-di-QAS (s = 4), where m = 8, 11, 13, 16 and s = the number of alkyl groups in the spacer) to induce shape alteration, vesiculation, haemolysis and phosphatidylserine exposure in human erythrocytes, and to protect erythrocytes against hypotonic haemolysis. At high sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles rapidly induced echinocytic (spiculated) shapes and a release of exovesicles, mainly in the form of tubes, from the cell surface. Following 60 min incubation erythrocytes were sphero-echinocytic and a few cells with invaginations/endovesicles were observed. No phosphatidylserine exposure was detected. The haemolytic potency increased with an increase of the alkyl chain length. At sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles protected erythrocytes against hypotonic haemolysis. It is suggested that the Di-Cm-di-QAS (s = 4) amphiphiles perturb the membrane in a similar way as single-chain cationic amphiphiles, but that they do not easily translocate to the inner membrane leaflet.  相似文献   

4.
Vesiculation induced by amphiphiles in erythrocytes   总被引:4,自引:0,他引:4  
The ability of shape-transforming cationic, anionic, zwitterionic, and nonionic amphiphiles to induce vesiculation in human erythrocytes was studied. At concentrations where they exhibit maximum protection against hypotonic haemolysis (CAHmax) echinocytogenic amphiphiles induced a rapid release of exovesicles. Following 5 min of incubation, the vesicle release (acetylcholinesterase release) amounted from 4% (sodium alkyl sulphates) to 13% (zwittergents) of the total acetylcholinesterase activity of the erythrocytes. At concentrations corresponding to CAH50 the vesicle release was less than 15% of that released at CAHmax. The size and the appearance of the vesicles varied with the type of amphiphile. Stomatocytogenic amphiphiles which do not pass the erythrocytes through echinocytic stages, did not induce release of exovesicles. Electron and fluorescence microscopic observations of erythrocytes treated with stomatocytogenic amphiphiles strongly indicated that an endovesiculation had occurred. Amphiphiles which pass the erythrocytes through echinocytic stages before stomatocytic shapes are attained, induced a release of both exo- and endovesicles.  相似文献   

5.
Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  相似文献   

6.
In order to morphologically characterize exo- and endovesicles released during treatment of erythrocytes with amphiphiles and to look for possible amphiphile-specific effects on the vesiculation pattern, human erythrocytes were treated at 37 degrees C with amphiphiles at concentrations where they exhibit maximum protection against hypotonic haemolysis (cAHmax). Released exo-and endovesicles and treated cells were studied by means of transmission (TEM) and scanning (SEM) electron microscopy. All sphero-echinocytogenic amphiphiles induced a release of both spherical and tubular exovesicles. Dodecyl maltoside, a nonionic amphiphile with a bulky polar head, induced a release of predominantly tubular exovesicles, while all other sphero-echinocytogenic amphiphiles induced a release of predominantly spherical exovesicles. Some branched tubular exovesicles were released by a double-chained cationic amphiphile. Tail- and tongue-like structures were often seen on the exovesicles. Spherical exovesicles were frequently invaginated. Stomatocytogenic amphiphiles induced endovesiculation. In erythrocytes treated with most of the stomatocytogenic amphiphiles the endovesicles were clustered, but with some amphiphiles the endovesicles were randomly distributed. Large ringformed endovesicles (octaethyleneglycol alkyl ethers) and endovesicles in chains (octyl and decyl glucopyranoside) also occurred. The endovesicle membrane was often budding onto the lumen of the vesicle and in some cases this could ultimately lead to a vesicle inside the endovesicle. We conclude that amphiphiles do not only trigger vesiculation, but may also specifically affect the vesiculation processes.  相似文献   

7.
A wide variety of structurally different antihaemolytic amphiphiles were tested for their ability to induce exovesiculation (acetylcholinesterase (AChE) release, transmission electron microscopic (TEM) studies), endovesiculation (fluorescein isothiocyanate conjugated dextran (FITC-dextran) internalization, TEM studies) and shape changes in human erythrocytes at concentrations where they exert maximum protection against hypotonic haemolysis. The results show that vesiculation is a common phenomenon induced by amphiphiles in erythrocytes. Sphero-echinocytogenic amphiphiles induced exovesiculation, whereas stomatocytogenic amphiphiles induced endovesiculation. The antihaemolytic potency of the amphiphiles was not related to their ability to induce exo- or endovesiculation, or to the type or extent of shape changes induced, and it could not be ascribed to any molecular feature of the amphiphiles or to their charge. It is proposed that amphiphiles, when intercalated into the lipid bilayer of the membrane, rapidly induce rearrangements within the bilayer and that these rearrangements are associated with an increase in the permeability of the membrane; it is suggested that a rapid efflux of ions decreases the difference in osmotic pressure between cell interior and hypotonic buffer, thereby protecting cells from being lysed.  相似文献   

8.
Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP‐dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.  相似文献   

9.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

10.
The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part.  相似文献   

11.
Electric field pulses >2-3 kV cm1 long known to induce membrane poration and fusion of erythrocytes as well as to enhance the transbilayer mobility of phospholipids and to perturb aminophospholipid asymmetry, are shown to induce, at 0 C., transformation of the discocytic cells into echinocytes and spheroechinocytes. The extent of transformation increases with strength, duration and number of pulses. Its time course is biphasic., a major rapid phase (t/2 ~ 5 s) being followed by a minor one, lasting for 2-3 h. Shape transformation goes along with the exofacial exposure of phosphatidylserine (PS), detected by FITC-annexin V binding and quantified by a calibration curve established via externally inserted dilauroylphosphatldylserine. Incubation of these echinocytes at 37 C leads to a rapid recovery of the discocytic shape followed by slower formation of stomatocytes. Shape recovery is temperature dependent (Ea ~100 kJ/mol), and can be impaired by depletion of ATP or Mg++ and by addition of vanadate or fluoride. Shape recovery and stomatocyte formation go along with a rapid loss of annexin binding in about 45% of the cells while the rest maintains its binding capacity. In the presence of vanadate, annexin binding increases in all cells. The results are discussed in the light of the bilayer couple concept of erythrocyte shape and the enhanced transverse mobility of phospholipids. Echinocyte formation is most likely caused by the reorientation of endofacial aminopho-spholipids to the outer leaflet of the bilayer. Shape recovery and stomatocyte formation probably result from a continuous reinternalization of PS via the ATP dependent aminophospholipid translocase, but may also be supported by downhill movement of PC to the inner leaflet and by other yet unidentified processes.  相似文献   

12.
Effect of anandamide on erythrocyte survival.   总被引:1,自引:0,他引:1  
The endocannabinoid anandamide (Arachidonylethanolamide, AEA) is known to induce apoptosis in a wide variety of nucleated cells. The present study explored whether anandamide induces suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus cleared from circulating blood. Triggers of eryptosis include increase of cytosolic Ca2+ activity, formation of PGE(2), oxidative stress and excessive cell shrinkage. Erythrocyte Ca2+ activity was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to anandamide (= 2.5 microM) increased cytosolic Ca2+ activity, enhanced the percentage of annexin V binding erythrocytes and decreased erythrocyte forward scatter, effects significantly blunted in the presence of cycloxygenase inhibitors acetylsalicylic acid (50 microM) or ibuprofen (100 microM) and in the nominal absence of extracellular Ca2+. Anandamide further enhanced the stimulating effects of hypertonic (addition of 550 mM sucrose) or isotonic (isosmotic replacement of Cl- with gluconate) cell shrinkage on annexin V binding. The present observations demonstrate that anandamide increases cytosolic Ca2+ activity, thus leading to cell shrinkage and cell membrane scrambling of mature erythrocytes.  相似文献   

13.
Diabetes increases the percentage of circulating erythrocytes exposing phosphatidylserine (PS) at the cell surface. PS-exposing erythrocytes are recognized, bound, engulfed and degraded by macrophages. Thus, PS exposure, a feature of suicidal erythrocyte death or eryptosis, accelerates clearance of affected erythrocytes from circulating blood. Moreover, PS-exposing erythrocytes bind to the vascular wall thus interfering with microcirculation. The present study explored mechanisms involved in the triggering of PS exposure by methylgloxal, an extra- and intracellular metabolite which is enhanced in diabetes. PS exposure, cell size and cytosolic Ca(2+)-activity after methylglyoxal treatment were measured by FACS analysis of annexin V binding, forward scatter and Fluo-3-fluorescence, respectively, and it was shown that the treatment significantly enhanced the percentage of PS-exposing erythrocytes at concentrations (0.3 microM) encountered in diabetic patients. Surprisingly, methylglyoxal did not significantly increase cytosolic Ca(2+) concentration, and at concentrations up to 3 microM, did not decrease the forward scatter. Instead, exposure to methylglyoxal inhibited glycolysis thus decreasing ATP and GSH concentrations. In conclusion, methylglyoxal impairs energy production and anti-oxidative defense, effects contributing to the enhanced PS exposure of circulating erythrocytes and eventually resulting in anemia and deranged microcirculation.  相似文献   

14.
Amyloid peptides are known to induce apoptosis in a wide variety of cells. Erythrocytes may similarly undergo suicidal death or eryptosis, which is characterized by scrambling of the cell membrane with subsequent exposure of phosphatidylserine (PS) at the cell surface. Eryptosis is triggered by increase of cytosolic Ca(2+) activity and by activation of acid sphingomyelinase with subsequent formation of ceramide. Triggers of eryptosis include energy depletion and isosmotic cell shrinkage (replacement of extracellular Cl(-) by impermeable gluconate for 24 h). The present study explored whether amyloid peptide Abeta (1-42) could trigger eryptosis and to possibly identify underlying mechanisms. Erythrocytes from healthy volunteers were exposed to amyloid and PS-exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca(2+) activity (Fluo3 fluorescence) and ceramide formation (anti-ceramide antibody) were determined by FACS analysis. Exposure of erythrocytes to the amyloid peptide Abeta (1-42) (> or = 0.5 microM) for 24 h significantly triggered annexin V binding, an effect mimicked to a lesser extent by the amyloid peptide Abeta (1-40) (1 microM). Abeta (1-42) (> or = 1.0 microM) further significantly decreased forward scatter of erythrocytes. The effect of Abeta (1-42) (> or = 0.5 microM) on erythrocyte annexin V binding was paralleled by formation of ceramide but not by significant increase of cytosolic Ca(2+) activity. The presence of Abeta (1-42) further significantly enhanced the eryptosis following Cl(-) depletion but not of glucose depletion for 24 hours. The present observations disclose a novel action of Abeta (1-42), which may well contribute to the pathophysiological effects of amyloid peptides, such as vascular complications in Alzheimer's disease.  相似文献   

15.
Suicidal erythrocyte death following cellular K+ loss.   总被引:1,自引:0,他引:1  
Hallmarks of apoptosis include cell shrinkage, which is at least partially due to cellular K(+) loss. The decline of cellular K(+) concentration has been suggested to participate in the triggering of apoptosis. Suicidal erythrocyte death or eryptosis is triggered by increased cytosolic Ca(2+) activity leading to activation of Ca(2+)-sensitive K(+) channels with subsequent cellular K(+) loss and cell shrinkage, and to Ca(2+)-sensitive scambling of the cell membrane with subsequent phosphatidylserine (PS) exposure at the cell surface. Phosphatidylserine exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether cellular loss of K(+) and/or cell shrinkage actively participate in the triggering of cell membrane phospholipid scrambling. Cellular K(+) loss was achieved by treatment of human erythrocytes with the K(+) ionophore valinomycin (1 nM) at different extracellular K(+) concentrations (5-125 mM) and osmolarities (300-550 m Osm). Cell volume was estimated from forward scatter and PS exposure from annexin V binding in FACS analysis. Treatment with 1 nM valinomycin indeed decreased forward scatter and increased annexin V binding. The effect was significantly blunted in the presence of staurosporine (1 microM). Increase of extracellular K(+) concentration gradually blunted the decrease of forward scatter but inhibited annexin V binding only at extracellular K(+) concentrations >or=75 mM. An increase of extracellular osmolarity (+150 mM or 250 mM sucrose) reversed the protective effect of 75 mM KCl during valinomycin treatment. A correlation between forward scatter and annexin binding at different osmolarities and K(+) concentrations suggests that the cellular K(+) content determines the rate of suicidal erythrocyte death primarily through its influence on cell volume.  相似文献   

16.
Anionic amphiphiles have been shown to influence the NADPH oxidase system. Although one target of the amphiphile action is p47(phox), the cell-free activation of the enzyme in the absence of p47(phox) is also influenced. In the present study, we examined the actions of sodium dodecyl sulfate (SDS) on the NADPH oxidase system in vivo. Treatment of guinea pig neutrophils with the amphiphile caused the translocation of Rac to a membrane fraction and its conversion to the GTP-bound form. Because SDS had little effect on p47(phox), it increased the superoxide production only when p47(phox) was otherwise activated. Inhibitors of phosphoinositide 3-kinases had no effect on the SDS-induced translocation of Rac to the membrane. However, the inhibitors prevented the conversion of Rac to its GTP-bound form, indicating that these two processes can be controlled separately. In a cell-free system, SDS induced the binding of p47(phox) and Rac to the membrane preparation. The SDS concentration inducing the Rac binding was lower than that inducing the p47(phox) binding. Thus we observed that Rac is more sensitive to SDS than p47(phox) both in vivo and in vitro. The results suggest a role of natural amphiphiles such as unsaturated fatty acids in regulation of Rac activation.  相似文献   

17.
Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.  相似文献   

18.
A novel series of dipeptidyl alpha-ketoamide derivatives with amphiphile was designed and synthesized as water-soluble calpain inhibitors. The introduction of amphiphiles at the P3 site increased water solubility without loss of membrane permeability and provided the oral available inhibitors. Extension of the ethylene glycol chain at the P3 site led to an improvement in persistence of plasma levels. In particular, introduction of a combination of a diethylene glycol methyl ether moiety at the P3 site, a phenylalanine residue at the P1 site and a cyclopropyl moiety at the P' site was the most effective modification for an increase in plasma drug exposure.  相似文献   

19.
Maintenance of phospholipid asymmetry of the plasma membrane is essential for cells to prevent phagocytic removal or acceleration of coagulation. Photodynamic treatment (PDT), which relies on the generation of reactive oxygen species to achieve inactivation of pathogens, might be a promising approach in the future for decontamination of red blood cell concentrates. To investigate whether PDT affects phospholipid asymmetry, erythrocytes were illuminated in the presence of 1,9-dimethyl-methylene blue (DMMB) as photosensitizer and subsequently labeled with FITC-labeled annexin V. This treatment resulted in about 10% annexin V positive cells, indicating exposure of phosphatidylserine (PS). Treatment of erythrocytes with N-ethylmaleimide (NEM) prior to illumination, to inhibit inward translocation of PS via the aminophospholipid translocase, resulted in enhanced PS exposure, while treatment with H(2)O(2) (previously shown to inhibit phospholipid scrambling) greatly diminished PS exposure, indicating the induction of phospholipid scrambling by PDT. Only erythrocytes illuminated in the presence of DMMB showed translocation of NBD-phosphatidylcholine (NBD-PC), confirming scrambling induction. Double label experiments indicated that PS exposure does not occur without concurrent scrambling activity. Induction of scrambling was only moderately affected by Ca(2+) depletion of the cells. In contrast, scavengers of singlet oxygen were found to prevent phospholipid scrambling induced by PDT. The results of this study show that phospholipid scrambling is induced in human erythrocytes by exposure to singlet oxygen.  相似文献   

20.
P G Scherer  J Seelig 《Biochemistry》1989,28(19):7720-7728
The influence of electric surface charges on the polar headgroups and the hydrocarbon region of phospholipid membranes was studied by mixing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with charged amphiphiles. A positive surface charge was generated with dialkyldimethylammonium salts and a negative surface charge with dialkyl phosphates. The POPC:amphiphile ratio and hence the surface charge density could be varied over a large range since stable liquid-crystalline bilayers were obtained even for the pure amphiphiles in water. POPC was selectively deuterated at both methylene segments of the choline moiety and at the cis double bond of the oleic acyl chain. Additional experiments were carried out with 1,2-dipalmitoyl-rac-glycero-3-phosphocholine labeled at the C-2 position of the glycerol backbone. Deuterium, phosphorus, and nitrogen-14 nuclear magnetic resonance (NMR) spectra were recorded for liquid-crystalline bilayers with varying concentrations of amphiphiles. Although the hydrocarbon region and the glycerol backbone were not significantly influenced by the addition of amphiphiles, very large perturbations of the phosphocholine headgroup were observed. Qualitatively, these results were similar to those observed previously with other cationic and anionic molecules and suggest that the electric surface charge is the essential driving force in changing the phospholipid headgroup orientation and conformation. While the P-N dipole is approximately parallel to the membrane surface in the pure phospholipid membrane, the addition of a positively charged amphiphile or the binding of cationic molecules moves the N+ end of the dipole toward the water phase, changing the orientation of the phosphate segment by more than 30 degrees at the highest amphiphile concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号