首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight papers were presented in this year's symposium "Advances in Biocatalysis" at the 232nd ACS National Meeting, accentuating the most recent development in biocatalysis. Researchers from both industry and academia are addressing several fundamental problems in biocatalysis, including the limited number of commercially available enzymes that can be provided in bulk quantities, the limited enzyme stability and activity in nonaqueous environments, and the permeability issue and cell localization problems in whole-cell systems. A trend that can be discerned from these eight talks is the infusion of new tools and technologies in addressing various challenges facing biocatalysis. Nanotechnology, bioinformatics, cellular membrane engineering and metabolic engineering (for engineering whole-cell catalysts), and protein engineering (to improve enzymes and create novel enzymes) are becoming more routinely used in research laboratories and are providing satisfactory solutions to the problems in biocatalysis. Significant progress in various aspects of biocatalysis from discovery to industrial applications was highlighted in this symposium.  相似文献   

2.
Biocatalysis offers opportunities for highly selective chemical reactions with high turnover rates under relatively mild conditions. Use of whole-cell or multi-enzyme systems enables transformations of complexity unmatched by nonbiological routes. However, advantages of biocatalysis are frequently compromised by poor enzymatic performance under non-native reaction conditions, the absence of enzymes with desired substrate or reaction specificities, and low metabolic fluxes or competing pathways. During the 234th National Meeting of the American Chemical Society, these issues were addressed in the "Advances in Biocatalysis" sessions. Protein engineering and metabolic pathway engineering were used to develop efficient enzymes and whole-cell catalysts. Novel strategies for the use of enzymes at solid interfaces and in nonaqueous environments were discussed, and efficient biotransformation platforms were demonstrated. These advances broaden the applications of biocatalysis in biofuels, pharmaceuticals, fine chemicals, and human health.  相似文献   

3.
双水相生物催化技术的研究进展   总被引:1,自引:0,他引:1  
双水相生物催化是一种高效且易于放大的生物催化技术,可以有效解决传统生物催化过程中产物浓度低、产物和副产物的抑制、以及生物催化剂难以回收等缺点。介绍了该技术的操作工艺及设备研究及其在抗生素、激素、肽类和有机化舍物酶法合成中的应用研究现状,展望了该技术的可能发展方向。  相似文献   

4.
生物催化与生物转化研究进展   总被引:1,自引:0,他引:1  
由于生物催化过程具有高效、高选择性、条件温和、环境友好等优点,因此成为可持续发展过程中替代和拓展传统有机化学合成的重要方法。近两年的进展集中于新生物催化剂的发现和改造,以及将生物催化和生物转化应用于工业过程的探索,包括开发新的反应体系,新的固定化方法等。可以预见,在医药中间体等高附加值化工产品的生产过程中,生物催化和生物转化的应用将呈现加速增长趋势。  相似文献   

5.
Biocatalysis in nonaqueous solvents   总被引:2,自引:0,他引:2  
Biotransformation technologies have enjoyed a renewed interest from researchers and industry because of the progress made in the discovery and design of new, efficient biocatalysts for synthetic applications. Biocatalysis in nonaqueous media, which offers unique capabilities and thus plays a major role in biotransformation technologies, has made tremendous progress in recent years. On average, at least one paper dealing with biocatalysis in organic solvents is published every day. New, remarkable developments have taken place in several key areas of this exciting field during the past year.  相似文献   

6.
工业生物催化技术   总被引:7,自引:2,他引:7  
以蛋白质酶的工程应用为核心的工业生物催化技术,被认为是生物技术继生物医药和转基因植物之后的第三次浪潮。它的发展与应用将对人类的工业化学过程带来根本的变革。工业生物催化的兴起与以下的两个关键技术因素有密切的关系:(1)蛋白质定向进化技术的出现,(2)基因组学和蛋白质组学的发展。探讨了工业生物催化技术的现状和发展趋势,并对我国如何发展该领域的基础和应用研究提出一些见解。  相似文献   

7.
Modern biocatalysis is developing new and precise tools to improve a wide range of production processes, which reduce energy and raw material consumption and generate less waste and toxic side-products. Biocatalysis is also achieving new advances in environmental fields, from enzymatic bioremediation to the synthesis of renewable and clean energies and biochemical cleaning of 'dirty' fossil fuels. Despite the obvious benefits of biocatalysis, the major hurdles hindering the exploitation of the repertoire of enzymatic processes are, in many cases, the high production costs and the low yields obtained. This article will discuss these issues, pinpointing specific new advances in recombinant DNA techniques amenable to future biocatalyst development, in addition to drawing the attention of the biotechnology community to the active pursuit and development of environmental biocatalysis, from remediation with enzymes to novel green processes.  相似文献   

8.
Biocatalysis for pharmaceutical intermediates: the future is now   总被引:3,自引:0,他引:3  
Biocatalysis is continuing to gain momentum and is now becoming a key component in the toolbox of the process chemist, with a place alongside chemocatalysis and chromatographic separations. The pharmaceutical industry demands a speed of development that must be on a parallel with conventional chemistry and high optical purity for complex compounds with multiple chiral centres. This review describes how these demands are being addressed to make biocatalysis successful, particularly by the use of micro-scale technology for high-speed catalyst screening and process development alongside discipline integration of biology and engineering with chemistry. Developments in recombinant technology will further expand the repertoire of biocatalysis in the coming years to new chemistries and enable catalyst design to fit the process. Further development of biocatalysis for green chemistry and high productivity processes can also be expected.  相似文献   

9.
Biocatalysis has become an established technology for the industrial manufacture of fine chemicals. In recent years, a multitude of chemical companies have embraced biocatalysis for the manufacture of desired stereoisomers, and new or improved methods for the synthesis of enantiomerically pure alpha- and beta-amino acids, amines, amides, peptides, nitriles, alcohols, organic acids and epoxides have emerged. Furthermore, the selectivity and mild operational conditions of biocatalysts are increasingly applied in industry to modify complex target molecules. These recent innovations in the manufacture of industrial fine chemicals using biocatalysis are discussed from an industrial perspective.  相似文献   

10.
生物催化是指将酶或生物有机体用于有用的化学转化的过程,在人们对传统化学催化的环境影响抱有忧虑的情况下,生物催化提供了一种有吸引力的选择。在过去的几十年里,对生物催化剂的研究每出现一次大的进步,生物催化的发展就会出现一次高潮。因此,生物催化剂的发现与改造已成为当今研究的热点。宏基因组文库技术的出现克服了许多微生物不可培养的障碍,人们能够从自然资源中获得丰富的潜在的生物催化剂。而基于理性设计的分子改造技术的发展,可以使得人们对潜在的生物催化剂进行快速而有效的改造以满足工业化生产的需求。随着生物催化剂发现与改造的手段不断进步,更多的优良生物催化剂得到了广泛的应用,生物催化在工业生产中也得到了更深入的应用。结合作者的研究工作,总结了生物催化剂发现与改良的一些研究进展,以为获得更多优良的、能够实现工业应用的生物催化剂奠定理论基础。  相似文献   

11.
手性技术与生物催化   总被引:5,自引:0,他引:5  
简要介绍了手性,手性技术与生物催化的基本概念。手性,是指一个有机分子具有不对称性,形成两种空间排布方式不同的对映异构体。手性技术即生产手性化合物的技术,手性化合物的制备方法主要有手性源、外消旋体拆分、不对称合成等几种。生物催化,即利用酶或微生物等生物材料催化进行某种化学反应,被认为是手性化合物生产取得突破的关健技术。文章还介绍了生物催化外消旋体拆分、生物催化不对称合成等几种生产手性化合物的应用实例。  相似文献   

12.
Biocatalysis in non-aqueous media has undergone tremendous development during the last decade, and numerous reactions have been introduced and optimized for synthetic applications. In contrast to aqueous enzymology, biotransformations in organic solvents offer unique industrially attractive advantages, such as: drastic changes in the enantioselectivity of the reaction, the reversal of the thermodynamic equilibrium of hydrolysis reactions, suppression of water-dependent side reactions, and resistance to bacterial contamination. Currently, the field is dominated by heterogeneous biocatalysis based primarily on lyophilized enzyme powders, cross-linked crystals, and enzymes immobilized on inert supports that are mainly applied in enantioselective synthesis. However, low reaction rates are an inherent problem of the heterogeneous biocatalysis, while the homogeneous systems have the advantage that the elimination of diffusional barriers of substrates and products between organic and water phases results in an increase in the reaction rate. Here the discussion is focused on the correlation between activity and structure of the intact enzymes dissolved in neat organic solvents, as well as modifications of natural enzymes, which make them soluble and catalytically active in non-aqueous environment. Factors that influence conformation and stability of the enzymes are also discussed. Current developments in non-aqueous biocatalysts that combine advantages of protein modification and immobilization, i.e., HIP plastics, enzyme chips, ionic liquids, are introduced. Finally, engineering enzymes for biotransformations in non-conventional media by directed evolution is summarized.  相似文献   

13.
Homogeneous biocatalysis in organic solvents and water-organic mixtures   总被引:1,自引:0,他引:1  
Biocatalysis in non-aqueous media has undergone tremendous development during the last decade, and numerous reactions have been introduced and optimized for synthetic applications. In contrast to aqueous enzymology, biotransformations in organic solvents offer unique industrially attractive advantages, such as: drastic changes in the enantioselectivity of the reaction, the reversal of the thermodynamic equilibrium of hydrolysis reactions, suppression of water-dependent side reactions, and resistance to bacterial contamination. Currently, the field is dominated by heterogeneous biocatalysis based primarily on lyophilized enzyme powders, cross-linked crystals, and enzymes immobilized on inert supports that are mainly applied in enantioselective synthesis. However, low reaction rates are an inherent problem of the heterogeneous biocatalysis, while the homogeneous systems have the advantage that the elimination of diffusional barriers of substrates and products between organic and water phases results in an increase in the reaction rate. Here the discussion is focused on the correlation between activity and structure of the intact enzymes dissolved in neat organic solvents, as well as modifications of natural enzymes, which make them soluble and catalytically active in non-aqueous environment. Factors that influence conformation and stability of the enzymes are also discussed. Current developments in non-aqueous biocatalysts that combine advantages of protein modification and immobilization, i.e., HIP plastics, enzyme chips, ionic liquids, are introduced. Finally, engineering enzymes for biotransformations in non-conventional media by directed evolution is summarized.  相似文献   

14.
New opportunities for biocatalysis: making pharmaceutical processes greener   总被引:3,自引:1,他引:2  
The pharmaceutical industry requires synthetic routes to be environmentally compatible as well as to fulfill the demands of process economics and product specification and to continually reduce development times. Biocatalysis has the potential to deliver 'greener' chemical syntheses, and in this review some of these opportunities are outlined and outstanding challenges presented. Future development will require research targeted towards increased commercial availability of key enzymes, as well as the improvement of enzyme stability and substrate repertoire, to fully realize the potential of biocatalysis for making pharmaceutical processes greener.  相似文献   

15.
Combining organometallics and biology has generated broad interest from scientists working on applications from in situ drug release to biocatalysis. Engineered enzymes and biohybrid catalysts (also referred to as artificial enzymes) have introduced a wide range of abiotic chemistry into biocatalysis. Predominantly, this work has concentrated on using these catalysts for single step in vitro reactions. However, the promise of using these hybrid catalysts in vivo and combining them with synthetic biology and metabolic engineering is vast. This report will briefly review recent advances in artificial metalloenzyme design, followed by summarising recent studies that have looked at the use of these hybrid catalysts in vivo and in enzymatic cascades, therefore exploring their potential for synthetic biology.  相似文献   

16.
Biocatalysis is a promising approach to sustainably synthesize pharmaceuticals, complex natural products, and commodity chemicals at scale. However, the adoption of biocatalysis is limited by our ability to select enzymes that will catalyze their natural chemical transformation on non-natural substrates. While machine learning and in silico directed evolution are well-posed for this predictive modeling challenge, efforts to date have primarily aimed to increase activity against a single known substrate, rather than to identify enzymes capable of acting on new substrates of interest. To address this need, we curate 6 different high-quality enzyme family screens from the literature that each measure multiple enzymes against multiple substrates. We compare machine learning-based compound-protein interaction (CPI) modeling approaches from the literature used for predicting drug-target interactions. Surprisingly, comparing these interaction-based models against collections of independent (single task) enzyme-only or substrate-only models reveals that current CPI approaches are incapable of learning interactions between compounds and proteins in the current family level data regime. We further validate this observation by demonstrating that our no-interaction baseline can outperform CPI-based models from the literature used to guide the discovery of kinase inhibitors. Given the high performance of non-interaction based models, we introduce a new structure-based strategy for pooling residue representations across a protein sequence. Altogether, this work motivates a principled path forward in order to build and evaluate meaningful predictive models for biocatalysis and other drug discovery applications.  相似文献   

17.
工业酶制剂研发与应用已经渗透到各大工业领域,但中国作为用酶大国、产酶小国面临重大挑战,鉴于以化学催化为核心的基础物质加工业面临资源、能源和环境三大危机,酶工程与生物催化已被列入许多国家的科技与产业发展战略,应用高效、清洁的生物催化技术是实现化学工业可持续发展以及发酵工业产业升级的重要途径之一。文中以2017年第十一届中国酶工程学术研讨会杜邦-杰能科中国酶工程杰出贡献奖获得者特邀报告为基础整理编写而成,从自主酶库构建、酶分子机器/细胞工厂创制及产业化应用等角度概述当前酶工程与生物催化发展现状及前景。  相似文献   

18.
Biocatalysis, the conversion of substrates into valuable products by the use of enzymes, has some striking advantages in comparison to standard organic chemistry for drug synthesis. By biocatalysis, substrates that contain several identical reactive groups at different positions can be converted with high regio-selectivity and enantio-selectivity. In this study, an E. coli isolate (E132) was identified which was able to convert the steroid desoxycorticosterone into the product 4-pregnen-20,21-diol-3-one in real terms. The product was purified from the cell culture supernatant by HPLC and its structure was demonstrated by mass spectrometry and NMR spectroscopy. It was tested on inhibition of human 5alpha-reductases type I and type II. At a concentration of 10 microM, inhibition was 49.0% for type I and 81.8% for type II, whereas there was no inhibition of human aromatase (CYP19) at 20 microM and human 17alpha-hydroxylase-C17,20-lyase (CYP17) at 2.5 microM detectable. The IC50 value of 4-pregnen-20,21-diol-3-one for human 5alpha-reductase type II was determined to be 1.56 microM.  相似文献   

19.
Biocatalysis, the conversion of substrates into valuable products by the use of enzymes, has some striking advantages in comparison to standard organic chemistry for drug synthesis. By biocatalysis, substrates that contain several identical reactive groups at different positions can be converted with high regio-selectivity and enantio-selectivity. In this study, an E. coli isolate (E132) was identified which was able to convert the steroid desoxycorticosterone into the product 4-pregnen-20,21-diol-3-one in real terms. The product was purified from the cell culture supernatant by HPLC and its structure was demonstrated by mass spectrometry and NMR spectroscopy. It was tested on inhibition of human 5α-reductases type I and type II. At a concentration of 10 μM, inhibition was 49.0% for type I and 81.8% for type II, whereas there was no inhibition of human aromatase (CYP19) at 20 μM and human 17α-hydroxylase-C17,20-lyase (CYP17) at 2.5 μM detectable. The IC50 value of 4-pregnen-20,21-diol-3-one for human 5α-reductase type II was determined to be 1.56 μM.  相似文献   

20.
Abstract

This is the presentation of the Special Issue “Biocatalysis in Spain”, covering the work of several Spanish groups in the field of Biocatalysis and Biotransformations. Thus, both research articles and reviews allow one to draw an accurate view of the state-of-the-art development in Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号