首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver microsomes incubated with a NADPH regenerating system, ethanol and the spin trapping agent 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) produced an electron spin resonance (ESR) signal which has been assigned to the hydroxyethyl free radical adduct of 4-POBN by using 13C-labelled ethanol. The free radical formation was dependent upon the activity of the microsomal monoxygenase system and increased following chronic feeding of the rats with ethanol. The production of hydroxyethyl free radicals was stimulated by the addition of azide, while catalase and OH. scavengers decreased it. This suggested that hydroxyl radicals (OH.) produced in a Fenton-type reaction from endogenously formed hydrogen peroxide were involved in the free radical activation of ethanol. Consistently, the supplementation of iron, under various forms, also increased the intensity of the ESR signal which, on the contrary, was inhibited by the iron-chelating agent desferrioxamine. Microsomes washed with a solution containing desferrioxamine and incubated in a medium treated with Chelex X-100 in order to remove contaminating iron still produced hydroxyethyl radicals, although at a reduced rate. Under these conditions the free radical formation was apparently independent from the generation of OH. radicals, whereas addition of cytochrome P-450 inhibitors decreased the hydroxyethyl radical formation, suggesting that a cytochrome P-450-mediated process might also be involved in the activation of ethanol. Reduced glutathione (GSH) was found to effectively scavenge the hydroxyethyl radical, preventing its trapping by 4-POBN. The data presented suggest that ethanol-derived radicals could be generated during the microsomal metabolism of alcohol probably through two different pathways. The detection of ethanol free radicals might be relevant in understanding the pathogenesis of the liver lesions which are a consequence of alcohol abuse.  相似文献   

2.
Lipid peroxidation in microsomes was studied using a spin-trapping technique. Free radical adducts of phenyltertiarybutylnitrone (PBN) were produced as detected by electron spin resonance during induced lipid peroxidation of microsomes with a system consisting of NADPH, Fe2+, and pyrophosphate. The adducts were identified as intermediates of the substrates added to the microsomal system and not OH · or HO2 radicals. The production of the adduct parallels the NADPH-dependent formation of malondialdehyde (MDA). Analyses of the electron spin resonance hyperfine splitting constants allowed in some instances identification of the adducts. Purified preparations of cytochrome P-450 mimic the results of the microsomes. The carcinogens dimethyl and diethylnitrosoamine were metabolized in this system yelding reactive free radicals and free NO, suggesting an alternate mechanism for the activity of these compounds as ultimate carcinogens.  相似文献   

3.
Radical production from alkyl hydrazines (i.e. phenelzine and benzylhydrazine) in rat liver microsomes has been proposed to occur via cytochrome P-450-catalyzed one-electron oxidation followed by beta-scission of an alkyl radical. In microsomes treated with phenelzine (2-phenylethylhydrazine), NADPH, and the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (4-POBN), the 4-POBN/2-phenylethyl radical adduct was detected by electron paramagnetic resonance spectroscopy. The addition of catalase and superoxide dismutase resulted in a 28.5 and 24% decrease in radical production, respectively. The concentration of the 4-POBN/2-phenylethyl radical adduct decreased significantly in the presence of metal chelators, i.e. EDTA, diethylenetriaminepentaacetic acid (DTPA), or deferoxamine mesylate. When phenelzine was incubated with deferoxamine mesylate-washed microsomes and NADPH in Chelex-treated incubation buffer, no significant radical adduct formation was detected. Addition of iron-chelator complexes (either Fe(3+)-DTPA or Fe(3+)-EDTA) greatly stimulated production of the 4-POBN/2-phenylethyl radical adduct in this system. These results show that the 2-phenylethyl radical produced from phenelzine in a microsomal system arises via a trace transition metal-catalyzed reaction. This reaction may occur through oxidation of phenelzine by the hydroxyl radical, which has also been spin-trapped with 4-POBN in this system.  相似文献   

4.
1. The metabolic activation of carbon tetrachloride to free-radical intermediates is an important step in the sequence of disturbances leading to the acute liver injury produced by this toxic agent. Electron-spin-resonance (e.s.r.) spin-trapping techniques were used to characterize the free-radical species involved. 2. Spin trapping was applied to the activation of carbon tetrachloride by liver microsomal fractions in the presence of NADPH, and by isolated intact rat hepatocytes. The results obtained with the spin trap N-benzylidene-2-methylpropylamine N-oxide ('phenyl t-butyl nitrone') (PBN) and [13C]carbon tetrachloride provide unequivocal evidence for the formation and trapping of the trichloromethyl free radical in these systems. 3. With the spin trap 2-methyl-2-nitrosopropane, however, the major free-radical species trapped are unsaturated lipid radicals produced by the initiating reaction of lipid peroxidation. 4. Although pulse radiolysis and other evidence support the very rapid formation of the trichloromethyl peroxy radical from the trichloromethyl radical and oxygen, no clear evidence for the trapping of the peroxy radical was obtainable. 5. The effects of a number of free-radical scavengers and metabolic inhibitors on the formation of the PBN-trichloromethyl radical adduct were studied, as were the influences of changing the concentration of PBN and incubation time. 6. High concentrations of the spin traps used were found to have significant effects on cytochrome P-450-mediated reactions; this requires caution in interpreting results of experiments done in the presence of PBN at concentrations greater than 50 mM.  相似文献   

5.
The effects of the hydroxylation product 3,4-benzo(a)pyrene and the free radical scavenger 1,2,3-trioxybenzene on cytochrome P-450 degradation in isolated rat hepatocytes induced by the Fe2+-ADP + NADPH system activating lipid peroxidation (LPO) were investigated. During incubation of hepatocytes, cytochrome P-450 is destroyed due to accumulation of LPO products. Addition of the free radical scavenger 1,2,3-trioxybenzene and the monoxygenase substrate 3,4-benzo(a)pyrene to the incubation medium induces inhibition of LPO and simultaneous stabilization of cytochrome P-450. Deceleration of malonic dialdehyde production by the free radical scavenger of the monoxygenase substrate suggests that both the compounds stabilize cytochrome P-450. It is assumed that in liver hepatocytes, exogenous free radical scavengers of the phenolic type and the products of their decarboxylation protect cytochrome P-450 against the LPO-induced destruction via oxidative metabolism of hydrophobic substrates.  相似文献   

6.
Aflatoxin B1 (AFB1) is a potent hepatocarcinogen. We have recently detected [via electron spin resonance (ESR) spectroscopy] free radicals in vivo in rat bile following AFB1 metabolism using the spin trapping [alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN)] technique. The aim of the present study was to identify the trapped free radical intermediates from the in vivo hepatic metabolism of AFB1. Rats were treated simultaneously with AFB1 (3 mg/kg i.p.) and the spin trapping agent 4-POBN (1 g/kg i.p.), and bile was collected over a period of 1 h at 20 min intervals. On-line high performance liquid chromatography (HPLC) coupled to ESR was used to identify an arachidonic acid-derived radical adduct of 4-POBN in rat bile, and a methyl adduct of 4-POBN from the reaction of hydroxyl radicals with carbon-13-labeled dimethyl sulfoxide ((13)C-DMSO). The effect of metabolic inhibitors, such as desferoxamine mesylate (DFO), an iron chelator, 2-dimethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF) 525A, a cytochrome P-450 inhibitor, and gadolinium chloride (GdCl(3)), a Kupffer cell inactivator, on in vivo aflatoxin-induced free radical formation were also studied. It was found that there was a significant decrease in radical formation as a result of DFO, SKF525A and GdCl(3) inhibition. Trapped 4-POBN radical adducts were also detected in rat bile following the in vivo metabolism of aflatoxin-M1, one of the hydroxylated metabolites of AFB1.  相似文献   

7.
We recently published electron paramagnetic resonance (EPR) spin trapping results that demonstrated the enzymatic reduction of sulfur mustard sulfonium ions to carbon-based free radicals using an in vitro system containing sulfur mustard, cytochrome P450 reductase, NADPH, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) in buffer (A.A. Brimfield et al., 2009, Toxicol. Appl. Pharmacol. 234:128-134). Carbon-based radicals have been shown to reduce molecular oxygen to form superoxide and, subsequently, peroxyl and hydroxyl radicals. In some cases, such as with the herbicide paraquat, a cyclic redox system results, leading to magnified oxygen free radical concentration and sustained tissue damage. Low mustard carbon radical concentrations recorded by EPR in our in vitro system, despite a robust (4.0mM) sulfur mustard starting concentration, led us to believe a similar oxygen reduction and redox cycling process might be involved with sulfur mustard. A comparison of the rate of mustard radical-POBN adduct formation in our in vitro system by EPR at atmospheric and reduced oxygen levels indicated a sixfold increase in 4-POBN adduct formation (0.5 to 3.0 μM) at the reduced oxygen concentration. That result suggested competition between oxygen and POBN for the available carbon-based mustard radicals. In parallel experiments we found that the oxygen radical-specific spin trap 5-tert-butoxycarbonyl-5-methylpyrroline-N-oxide (BMPO) detected peroxyl and hydroxyl radicals directly when it was used in place of POBN in the in vitro system. Presumably these radicals originated from O(2) reduced by carbon-based mustard radicals. We also showed that reactive oxygen species (ROS)-BMPO EPR signals were reduced or eliminated when mustard carbon radical production was impeded by systematically removing system components, indicating that carbon radicals were a necessary precursor to ROS production. ROS EPR signals were completely eliminated when superoxide dismutase and catalase were included in the complete in vitro enzymatic system, providing additional proof of oxygen radical participation. The redox cycling hypothesis was supported by density functional theory calculations and frontier molecular orbital analysis.  相似文献   

8.
R P Mason  J L Holtzman 《Biochemistry》1975,14(8):1626-1632
Electron spin resonance spectra are observed during the enzymatic reduction of many nitrophenyl derivatives by rat hepatic microsomes or mitochondria. The spectra indicate that nitroaromatic anion radicals are present and are freely rotating in aqueous solution at a steady-state concentration of 0.1-6 muM. The rate of formation of p-nitrobenzoate (NBZO) dianion radical in microsomal incubates is consistent with the radical being an obligate intermediate in the reduction of NBZO to p-aminobenzoic acid. A model system consisting of NBZO, NADPH, and FMN, but no heme-containing compounds, also reduced NBZO to the NBZO dianion free radical. The steady-state concentration of the anion radicals in microsomal systems is not altered by CO. This observation, together with the results from the model system, suggests that the formation of nitroaromatic anion radicals is mediated through a flavine and not cytochrome P-450. The oxidation of the anion radical intermediate by O2 to the parent nitro compound is proposed to account for the well-known O2 inhibition of microsomal nitroreductase.  相似文献   

9.
In the presence of ciprofloxacin (CPFX), free radical adduct formation was demonstrated in rat cerebral microsomes using a spin trap α-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone by electron spin resonance spectroscopy. Active microsomes, dihydronicotinamide-adenine dinucleotide phosphate, and ciprofloxacin were necessary for the formation of a spin trap/radical adduct. Adduct formation increased dose-dependently at 0.5–1?mM CPFX concentration for 180?min, and 0.3–1 mM concentration level for 240?min. The addition of SKF 525A, ZnCl2 or desferrioxamine to the incubation system caused complete inhibition of the radical formation. However, pretreatment of microsomal system with superoxide dismutase (SOD) did not induce any protective effect. Induction of lipid peroxidation, and depletion of thiol levels by CPFX were also shown in the system. These results strongly suggested that CPFX produces free radical(s) in the cerebral microsomes of rats.  相似文献   

10.
We have previously demonstrated the partial protection of the rat liver by 16,16-dmPGE2 (DMPG) against a number of hepatotoxins including carbon tetrachloride (CCl4). However, it has not been determined whether hepatoprotection by DMPG represents a true “cytoprotective” action or if merely accomplished through inhibition of CCl4 metabolism to reactive, toxic trichoromethyl (CCl3·) free radicals. This report details a series of experiments in which the effects of DMPG on CCl4 metabolism was evaluated in the rat.These data indicate that pretreatment with DMPG may reduce the hepatic concentration of the toxic CCl3· free radicals in CCl4 poisoned rats. Evidence is presented which suggests that this reduction in binding may have been due to a decrease in the rate of CCl4 metabolism. However, DMPG did not affect the hepatic concentration of total microsomal cytochrome P450, the necessary enzyme in this metabolic process. On the other hand, free radical spin trapping experiments indicate that the rate of free radical formation from CCl4 was slowed by treatment. Also, indirect evidence suggests that the metabolism of another cytochrome P450 substrate, phenobarbital, was slowed in DMPG treated rats. We conclude that the rate of CCl4 metabolism may be reduced by pretreatment with DMPG. Furthermore, some measure of hepatic protection might be expected to occur as a result of the reduction in the rate of CCl4 metabolism. However, we are unable to determine if this action was solely responsible for the observed hepatic protection.  相似文献   

11.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

12.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

13.
Hepatic microsornes metabolize ethanol to a free radical metabolite which forms adducts with the spin trapping agents PBN (phenyl-N-t-butylnitrone) and DMPO (5,5-dimethyl-l-pyrroline N-oxide). This ethanol radical has been identified as the I-hydroxyethyl radical through the use of 13C-labelled ethanol. A role of the cytochrome P-450 enzymes in the generation of the I-hydroxyethyl radical was suggested by requirements for oxygen and NADPH. as well as inhibition in the presence of SKF 525-A and imidazole. In contrast. the ESR signal intensity of the I-hydroxyethyl radical was diminished when either catalase. or the iron chelating agent deferoxdmine. was added to the microsomal incubations, and was increased by the addition of ADP-Fe. These observations suggest that the ethanol radicals may arise secondary to iron-catalyzed formation of hydroxyl radicals from hydrogen peroxide. This possibility was supported by enhanced rates of I-hydroxyethyl radical formation when microsomal catalase activity was inhibited by the addition of sodium azide, or by pretreatment of rats with aminotriazole. However, the reaction was relatively insensitive to scavengers of the hydroxyl radical. Thus, the mechanism of I-hydroxycthyl radical formation could involve two cytochrome P-450-dependent pathways: generation of hydrogen peroxide required for a Fenton reaction, as well as direct catalytic formation of the ethanol radical.  相似文献   

14.
Microsomal metabolism of ciprofloxacin generates free radicals   总被引:2,自引:0,他引:2  
Ciprofloxacin (CPFX) is a widely used fluoroquinolone antibiotic with a broad spectrum of activity. However, clinical experience has shown a possible incidence of undesirable adverse effects including gastrointestinal, skin, hepatic, and central nervous system (CNS) functions, and phototoxicity. Several examples in the literature data indicate that free radical formation might play a role in the mechanism of some of these adverse effects, including phototoxicity and cartilage defects. The purpose of this study is to investigate free radical formation during the metabolism of CPFX in hepatic microsomes using electron spin resonance (ESR) spectroscopy and spin trapping technique. We then investigate the effects of a cytochrome P450 inhibitor, SKF 525A, Trolox, and ZnCl2 on CPFX-induced free radical production. Our results show that CPFX induces free radical production in a dose- and time-dependent manner. The generation of 4-POBN/radical adduct is dependent on the presence of NADPH, CPFX, and active microsomes. Furthermore, free radical production is completely inhibited by SKF 525A, Trolox, or ZnCl2.  相似文献   

15.
Electron spin resonance spin-trapping techniques were used to investigate the in vitro and in vivo formation of free radicals during 3-methylindole (3MI) metabolism by goat lung. Utilizing the spin trap phenyl-t-butylnitrone, a nitrogen-centered free radical was detected 3 min after the addition of 3MI to an in vitro incubation system containing goat lung microsomes in the presence of NADPH and O2. The spectrum of the spin adduct was identical to that observed when 3MI was irradiated with ultraviolet light. A carbon-centered radical was also observed which increased in concentration with increasing incubation time. Microsomal incubations containing ferrous sulfate in the absence of 3MI to initiate lipid peroxidation produced the same carbon-centered free radical as obtained by spin-trapping. Malondialdehyde, and end product of lipid peroxidation, was also found to increase in concentration with increasing incubation time of 3MI. The concept that 3MI causes lipid peroxidation in the lung was supported by the in vivo study in which a carbon-centered radical was spin-trapped by phenyl-t-butylnitrone in lungs of intact goats infused with 3MI. This carbon-centered radical had hyperfine splitting constants identical to those carbon-centered free radicals trapped in in vitro incubations of 3MI. These data demonstrate that microsomal metabolism of 3MI produces a nitrogen-centered radical from 3MI which initiates lipid peroxidation in vitro and in vivo causing the formation of carbon-centered radicals from microsomal membranes.  相似文献   

16.
Carcinogenic nitrosamines: Free radical aspects of their action   总被引:6,自引:0,他引:6  
NDMA and other nitrosamines may be activated into DNA binding intermediates by a cytochrome P450-dependent formation of -nitrosamino radicals or photochemically. Within the catalytic site of cytochrome P450, these radical intermediates either combine with HO· to form -hydroxynitrosamines or decompose into nitric oxide and N-methylformaldimine. In the presence of phosphate, mutagenic -phosphonooxy derivatives are formed from radicals generated chemically/photochemically. Studies on lipid peroxidation, in vivo and in vitro, have further suggested that radicals are formed as intermediates from N-nitrosodialkylamines. The level of nitrosamine-induced lipid peroxidation parallels hepatocartgenicity in rats. These data, although preliminary, provide further evidence that free radical damage and DNA alkylation are involved in carcinogenesis induced by nitrosamines.  相似文献   

17.
Summary

Detection of hydroxyl free radicals is frequently performed by electron spin resonance (ESR) following spin trapping of the radical using 5,5-dimethylpyrroline N-oxide (DMPO) to generate a stable free radical having a characteristic ESR spectrum. The necessary ESR equipment is expensive and not readily available to many laboratories. In the present study, a specific and sensitive gas chromatography—mass spectrometry (GC/MS) method for detection of hydroxyl and hydroxyethyl free radicals is described. The DMPO or N-t-butyl—α—phenylnitrone (PBN) radical adducts are extracted and derivatized by trimethylsylilation and analyzed by GC/MS. To standardize the method, .OH and 1-hydroxyethyl radicals were generated in two different systems: 1) a Fenton reaction in a pure chemical system in the absence or presence of ethanol and 2) in liver microsomal suspensions where ethanol is metabolized in the presence of NADPH. In the Fenton system both radicals were easily detected and specifically identified using DMPO or PBN. In microsomal suspensions DMPO proved better for detection of .OH radicals and PBN more suitable for detection of 1-hydroxyethyl radicals. The procedure is specific, sensitive and potentially as useful as ESR.  相似文献   

18.
The previously described, iodine-labeled alkylating stable nitroxyl radicals located at different distances between the N-O. group and the iodine atom were used for a comparative study of the structure of microsomal cytochromes P-450 and P-448 active centers. The radicals were shown to change the optical spectra of Fe3+ located in the active site of the enzyme that are similar to those induced by cytochrome P-450 substrates. Some differences in the type of the radicals binding to control, phenobarbital- and 3-methylcholanthrene-induced microsomes were revealed. The alkylating radical substrate analogs covalently bound to microsomal cytochrome P-450 in the vicinity of the active center, resulting in the inhibition of oxidation of type I and II substrates (e. g., aniline and naphthalene). The value of the spectral binding constant (Ks) for naphthalene in the presence of the radical covalently bound to the cytochrome P-450 active center showed a tendency to increase. Using the ESR technique, the interaction between Fe3+ and the radical localized in the active site of cytochrome P-450 was demonstrated. The contribution of Fe3+ to the relaxation of the radicals covalently bound to cytochrome P-450 was evaluated from the values of the spin label ESR spectra saturation curves at 77K. The distances between the N-O. group of these radicals and Fe3+ in the enzyme active center for the three types of microsomes were determined. The data obtained point to structural peculiarities of the active center of cytochrome P-450, depending on the microsomal type.  相似文献   

19.
The main objective of the present study was to investigate the proposed role of cytochrome P450 in the reductive metabolism of quinones as well as in the formation of reduced oxygen species in liver microsomes from phenobarbital (PB-microsomes) and beta-naphthoflavone (beta NF-microsomes) pretreated rats. In the present study, 2,3,5,6-tetramethylbenzoquinone (TMQ) was chosen as a model quinone. Anaerobic one-electron reduction of TMQ by PB-microsomes showed relatively strong electron spin resonance (ESR) signals of the oxygen-centered semiquinone free radical (TMSQ), whereas these signals were hardly detectable with beta NF-microsomes. Under aerobic conditions TMSQ formation was diminished and concomitant reduction of molecular oxygen occurred in PB-microsomes. Interestingly, TMQ-induced superoxide anion radicals, measured by ESR (using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide), and hydrogen peroxide generation was found to occur with beta NF-microsomes as well. Furthermore, SK&F 525-A (a type I ligand inhibitor of cytochrome P450) inhibited TMQ-induced hydrogen peroxide formation in both PB- and beta NF-microsomes. However, metyrapone and imidazole (type II ligand inhibitors of cytochrome P450) inhibited molecular oxygen reduction in beta NF-microsomes and not in PB-microsomes. The present study indicates that cytochrome P450-mediated one-electron reduction of TMQ to TMSQ and subsequent redox cycling of TMSQ with molecular oxygen constitutes the major source for superoxide anion radical and hydrogen peroxide generation in PB-microsomes (i.e. from the reductase activity of cytochrome P450). However, most of the superoxide anion radical formed upon aerobic incubation of TMQ with beta NF-microsomes originates directly from the dioxyanion-ferri-cytochrome P450 complex (i.e. from the oxidase activity of cytochrome P450). In conclusion, both the one-electron reduction of TMQ and molecular oxygen were found to be cytochrome P450 dependent. Apparently, both the reductase and oxidase activities of cytochrome P450 may be involved in the reductive cytotoxicity of chemotherapeutic agents containing the quinoid moiety.  相似文献   

20.
Using the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) we have demonstrated that hydroxyl radicals are generated indirectly from purified preparations of rat liver microsomal NADPH-cytochrome c (P-450) reductase during NADPH oxidation. Hydroxyl radical formation is completely inhibited by p-chloromercuribenzoate, but not by metyrapone. In addition, hydroxyl radical DMPO adduct formation is blocked by added linolenic acid which, in turn, is peroxidatively degraded into malondialdehyde, suggesting that hydroxyl radicals formed from purified NADPH-cytochrome c (P-450) reductase are capable of initiating lipid peroxidation. A mechanism for the indirect production of hydroxyl radicals from NADPH-cytochrome P-450 reductase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号