首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of newly-developed water-soluble singlet oxygen sources in the oxidation of biologically important compounds and the electron-transfer process involving singlet oxygen has been reviewed. Particularly, oxidation products of tryptophan by chemically generated singlet oxygen were compared to those obtained in dye-sensitizd photooxygenation. The usefulness of trimethylsilyl cyanide as a trapping reagent for dipolar peroxide intermediates has been demonstrated in the photooxygenation of N-methylindoles, 2-(methoxymethylene)adamantane and adamantylideneadamantane in aprotic solvents. Based on these trapping reactions mechanism of singlet oxygen reaction of electron-rich enol ethers and enamines is discussed in light of theoretical calculation.  相似文献   

2.
With the goal of mimicking the mechanisms of the biological effects of low energy laser irradiation, we have shown that infrared low intensity laser radiation causes oxygenation of the chemical traps of singlet oxygen dissolved in organic media and water saturated by air at normal atmospheric pressure. The photooxygenation rate was directly proportional to the oxygen concentration and strongly inhibited by the singlet oxygen quenchers. The maximum of the photooxygenation action spectrum coincided with the maximum of the oxygen absorption band at 1270 nm. The data provide unambiguous evidence that photooxygenation is determined by the reactive singlet 1g state formed as a result of direct laser excitation of molecular oxygen. Hence, activation of oxygen caused by its direct photoexcitation may occur in natural systems.  相似文献   

3.
《Free radical research》2013,47(4-6):313-320
In the introduction a review is given of the various methods available for probing the mechanism of photooxygenation reactions. To illustrate the methodology, some new results on the the photooxygenation of α-ketocarboxylic acids and esters is given in which it is shown that these compounds sensitise singlet oxygen formation but are relatively unreactive to this oxidising species. Alternative mechanistic schemes are proposed.  相似文献   

4.
It has been studied whether 2,5-diphenylfuran is a specific singlet oxygen trap in aqueous systems. With certain 1O2 generating systems (Rose Bengal photooxygenation and NaOClH2O2 systems) and·OH generating systems (Fenton's reagent and acetaldehyde-xanthine oxidase system), diphenylfuran was chiefly converted in all cases to cis-dibenzoyl-ethylene, but not to trans-dibenzoylethylene. Low but detectable conversion of diphenylfuran to a hydroperoxide, probably a distinct 1O2-derived reaction in aqueous media, was found only in the Rose Bengal photooxygenation system.  相似文献   

5.
In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6‐dihydroxyindole‐2‐carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5‐S‐cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time‐resolved near‐infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450‐nm, quantum yield of singlet oxygen was very low (~10?4) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.  相似文献   

6.
It has been found that both the peroxidase and synthetase activity of sheep vesicular gland microsomes catalyze the oxygenation of singlet oxygen trapping or quenching agents. Furthermore the synthetase was also readily inactivated by these agents, particularly bilirubin, and suggests that singlet oxygen formed by the peroxidase activity may initiate prostaglandin biosynthesis. The singlet oxygen agents also protected the synthetase from self-catalyzed destruction or inactivation by peroxides and suggest that singlet oxygen may also be responsible for the inactivation.  相似文献   

7.
A solvent-free route for the photooxygenation of the 5-methoxyoxazoles (1) is described. The substrates were embedded in nanosized polystyrene particles generated by the emulsifier-free emulsion polymerization of styrene with divinylbenzene and porphyrine dyes as cross-polymerizable reagents. From the photooxygenation of , the 1,2,4-dioxazoles (2) were formed and isolated from the reaction cavities by ethanol extraction. From comparison of the substrate conversions, the efficiency of singlet oxygen generation from the porphyrine dyestuff and the stability of the sensitizing material were estimated.  相似文献   

8.
The photosensitizing properties of a novel water-soluble phthalocyanine-like photosensitizer, sulfonated dihydroxy phosphorus(V) tetrabenzotriazacorrole {P(OH)(2)TBCS(n)}, have been reported. It is relevant for the use of this dye as photodynamic sensitizer. The compound exhibited significant photocleavage of supercoiled (SC) pUC19 DNA. The photooxygenation and photocleavage to DNA showed high efficiency in generating singlet oxygen.  相似文献   

9.
It is shown that the weak IR absorption bands corresponding to the forbidden triplet-singlet transitions in oxygen molecules can be reliably studied in air-saturated solvents under ambient conditions using measurements of the photooxygenation rates of singlet oxygen traps (1,3-diphenylisobenzofuran or uric acid) upon direct excitation of oxygen molecules by IR diode lasers. The best results were obtained from comparison of the oxygenation rates upon direct and photosensitized singlet oxygen excitation. In the present paper, this method was applied to estimation of the absorbance (A(ox)) and molar absorption coefficients (ε(ox)) corresponding to the oxygen absorption bands at 765 and 1273 nm in carbon tetrachloride, acetone, alcohols and water. In carbon tetrachloride, the band at 1073 nm was also investigated. Correlation of the obtained data with the luminescence spectra and radiative rate constants of singlet oxygen, contribution of oxygen dimols and biological significance of the studied effects are discussed.  相似文献   

10.
Evidence for singlet oxygen formation has been obtained for the lactoperoxidase, H2O2 and bromide system by monitoring 2,3-diphenylfuran and diphenylisobenzofuran oxidation, O2 evolution, and chemiluminescence. This could provide an explanation for the cytotoxic and microbicidal activity of peroxidases and polymorphonuclear leukocytes. Evidence for singlet oxygen formation included the following. (a) Chemiluminescence accompanying the enzymic reaction was doubled in a deuterated buffer and inhibited by singlet oxygen traps. (b) The singlet oxygen traps, diphenylfuran and diphenylisobenzofuran, were oxidized to their known singlet oxygen oxidation products in the presence of lactoperoxidase, hydrogen peroxide and bromide. (c) The rate of oxidation of diphenylfuran and diphenylisobenzofuran was inhibited when monitored in the presence of known singlet oxygen traps or quenchers. (d) Oxygen evolution from the enzymic reaction was inhibited by singlet oxygen traps but not by singlet oxygen quenchers. (e) The traps or quenchers which were effective inhibitors in the experiments above did not inhibit peroxidase activity, were not competitive peroxidase substrates and did not react with the hypobromite intermediate since they did not inhibit hydrogen peroxide consumption by the enzyme. Using these criteria, various biological molecules were tested for their reactivity with singlet oxygen. Furthermore, by studying their effect on oxygen release by the enzymic reaction, it could be ascertained whether they were acting as singlet oxygen traps or quenchers.  相似文献   

11.
C Tanielian 《Biochimie》1986,68(6):797-806
This paper discusses the mechanism of photooxygenation reactions sensitized by dyes, such as: rose bengal, methylene blue, tetraphenylporphin and chlorophyll a. First it is shown more particularly that: the quantum yields of singlet oxygen O2(1 delta g) production gamma delta, and of intersystem crossing singlet S1-triplet T1, gamma is, are not always equal and that the possibilities gamma delta greater than or less than gamma is may occur or are observed; the processes S1 + O2(3 sigma)----T1 + O2(3 sigma) and T1 + O2(3 sigma)----S0 + O2(1 delta g) are mainly if not fully responsible for the quenching of the singlet and triplet excited states of the sensitizer by oxygen. Thereafter, clear indication is given of the considerable complication of the photooxygenation which may arise from particular properties of the investigated substrate A (or of other compounds present in the reaction medium) and which may result in a decrease of the oxygenation quantum yield phi O2. It is shown that this lowering of phi O2 is due to that of gamma delta and/or of phi A, (the probability that O2(1 delta g) yields an oxygenation product AO2) since phi O2 = gamma delta phi A. The latter effect can be induced by the quenching of singlet oxygen by the dye, a process which is quite general and which must be always taken into account in kinetic studies.  相似文献   

12.
The reactions of singlet oxygen (1O2) with cis and trans butenes-1,1,1-d3, at—80°C in Freon-11, show a product isotope effect (kH/kD) of 1.38 and 1.25 respectively. Isomerization of the starting materials or formation of dioxetanes were not observed during the course of the photooxygenation. Together with the isotope effects on the reactions of tetramethylethylene-d6 isomers with singlet oxygen, these results require the reversible formation of a perepoxide or charge transfer intermediate.  相似文献   

13.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   

14.
Hydroperoxides are major reaction products of radicals and singlet oxygen with amino acids, peptides, and proteins. However, there are few data on the distribution of hydroperoxides in biological samples and their sites of formation on peptides and proteins. In this study we show that normal-or reversed-phase gradient HPLC can be employed to separate hydroperoxides present in complex systems, with detection by postcolumn oxidation of ferrous xylenol orange to the ferric species and optical detection at 560 nm. The limit of detection (10-25 pmol) is comparable to chemiluminescence detection. This method has been used to separate and detect hydroperoxides, generated by hydroxyl radicals and singlet oxygen, on amino acids, peptides, proteins, plasma, and intact and lysed cells. In conjunction with EPR spin trapping and LC/MS/MS, we have obtained data on the sites of hydroperoxide formation. A unique fingerprint of hydroperoxides formed at alpha-carbon (backbone) positions has been identified; such backbone hydroperoxides are formed in significant yields only when the amino acid is part of a peptide or protein. Only side-chain hydroperoxides are detected with free amino acids. These data indicate that free amino acids are poor models of protein damage induced by radicals or other oxidants.  相似文献   

15.
Singlet oxygen production by biological systems   总被引:3,自引:0,他引:3  
Singlet oxygen (1 delta g) is a highly reactive, short-lived intermediate which readily oxidizes a variety of biological molecules. The biochemical production of singlet oxygen has been proposed to contribute to the destructive effects seen in a number of biological processes. Several model biochemical systems have been shown to produce singlet oxygen. These systems include the peroxidase-catalyzed oxidations of halide ions, the peroxidase-catalyzed oxidations of indole-3-acetic acid, the lipoxygenase-catalyzed oxidation of unsaturated long chain fatty acids and the bleomycin-catalyzed decomposition of hydroperoxides. Results from these model systems should not be uncritically extrapolated to living systems. Recently, however, an intact cell, the human eosinophil, was shown to generate detectable amounts of singlet oxygen. This result suggests that singlet oxygen may be shown to be a significant biochemical intermediate in a few biological processes.  相似文献   

16.
Methylene blue photosensitized oxidation of tyrosine in the presence of nitrite produces 3-nitrotyrosine, with maximum yield at pH 6. The formation of 3-nitrotyrosine requires oxygen and increases using deuterium oxide as solvent, suggesting the involvement of singlet oxygen in the reaction. The detection of dityrosine as an additional reaction product suggests that the first step in the interaction of tyrosine with singlet oxygen generates tyrosyl radicals which can dimerize to form dityrosine or react with a nitrite-derived species to produce 3-nitrotyrosine. Although the chemical identity of the nitrating species has not been established, the possible generation of nitrogen dioxide (*NO(2)) by indirect oxidation of nitrite by intermediately produced tyrosyl radical, via electron transfer, is proposed. One important implication of the results of this study is that the oxidation of tyrosine by singlet oxygen in the presence of nitrite may represent an alternative or additional pathway of 3-nitrotyrosine formation of potential importance in oxidative injures such as during inflammatory processes.  相似文献   

17.
The generation of reactive oxygen species from human erythrocytes has previously been demonstrated. Furthermore, erythrocytic protoporphyrin IX has been shown to generate superoxide and singlet oxygen when exposed to light. These findings suggest that a component of erythrocytic reactive oxygen species production may be light-dependent. By inhibiting erythrocyte superoxide dismutase, catalase, and glutathione peroxidase with N,N-diethyldithiocarbamate or sodium cyanide, we demonstrate the light-dependent generation of hydroxyl radical in human erythrocytes using spin trapping/Electron Spin Resonance spectroscopy. This finding may be significant in tissues where blood is exposed to light, such as in the eye.  相似文献   

18.
The oxidation of aqueous dispersions of unsaturated phosphatidylcholines by products released during the decomposition of potassium peroxychromate has been investigated. The rate and extent of oxidation have been measured by loss of unsaturated fatty acids and related to the rate of decomposition of peroxychromate as monitored by pH titrimetry and chromate analysis. The loss of oleic and linoleic acid from egg lecithin dispersions was similar in systems containing between 0.062 and 2 g peroxychromate and was limited to less than 50% of the total unsaturated residues of the substrate. Studies of the rate of oxidation suggested that the mechanism of reaction involved the progressive oxidation of the substrate dependent on the continuous supply of relatively short-lived oxidising species. The use of azide as a singlet oxygen quencher and 2,5-dimethyl- and 2,5-diphenylfurans as singlet oxygen traps did not prevent oxidation of the phospholipid.  相似文献   

19.
Plasmalogens are phospholipids containing a vinyl-ether linkage at the sn-1 position of the glycerophospholipid backbone. Despite being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl-ether functionality serving as a sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens at scavenging these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs were determined by time-resolved detection of phosphorescence at 1270nm. Relative rates of the interactions of singlet oxygen with plasmalogens and other lipids, in solution and in liposomal membranes, were measured by electron paramagnetic resonance oximetry and product analysis using HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. The results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with the corresponding rate constants being 1 to 2 orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl-ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic.  相似文献   

20.
The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号