首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of glucose across cell membranes is mediated by a family of facilitative glucose transporters (GLUTs). The class III glucose transporters GLUT8 and GLUT12 both contain a similar [DE]XXXL[LI] dileucine sorting signal in their amino terminus. This type of dileucine motif facilitates protein trafficking to various organelles or to the plasma membrane via interactions with adaptor protein (AP) complexes. The [DE]XXXL[LI] motif in GLUT8 is thought to direct it to late endosomal/lysosomal compartments via its interactions with AP1 and AP2. Unlike GLUT8, the [DE]XXXL[LI] motif does not direct GLUT12 to a lysosomal compartment. Rather, GLUT12 resides in the Golgi network and at the plasma membrane. In a previous study, we found that exchanging the XXX (TQP) residues in GLUT8 with the corresponding residues in GLUT12 (GPN) resulted in a dramatic missorting of GLUT8 to the cell surface. We postulated that the XXX amino acids upstream of the dileucine motif in GLUT8 influence the degree of interaction between the [DE]XXXL[LI] motif and adaptor proteins. To further explore its trafficking mechanisms, we created mutant constructs to identify the role that each of the individual XXX amino acids has for regulating the intracellular sorting of GLUT8. Here we find that the XXX amino acids, specifically the position of a proline -2 from the dileucine residues, influence the affinity of APs for GLUT8 and GLUT12.  相似文献   

2.
The transport of glucose across cell membranes is mediated by facilitative glucose transporters (GLUTs). The recently identified class III GLUT12 is predominantly expressed in insulin-sensitive tissues such as heart, fat and skeletal muscle. We examined the subcellular localization of GLUT12 in Chinese hamster ovary and human embryonic kidney 293 cells stably expressing murine GLUT12. We have previously shown that another class III GLUT8 contains a [DE]XXXL[LI] motif that directs it to late endosomal/lysosomal compartments. Despite also having this highly conserved motif in its amino terminus, GLUT12 does not colocalize with GLUT8. Rather, GLUT12 resides in the Golgi network and at the plasma membrane (PM). Furthermore, GLUT8 and GLUT12 exhibit dramatic differences in trafficking from the PM. Whereas GLUT8 is internalized following its expression at the cell surface, GLUT12 remains largely associated with the PM. To further explore the trafficking mechanisms, we created mutant constructs to explore the potential role of GLUT12's NH2-terminal dileucine motif in regulating its intracellular sorting. We show that both the GPN and the LL residues within the [DE]XXXL[LI] motif influence the cell surface expression of GLUT12 and conclude that the mechanisms governing the intracellular sorting of GLUT12 are distinct from those regulating the sorting of GLUT8.  相似文献   

3.
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the gamma and sigma1 subunits of AP-1 and the delta and sigma3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the gamma/delta and sigma subunits of AP-1 and AP-3.  相似文献   

4.
p67 is a lysosome-associated membrane protein-like lysosomal type I transmembrane glycoprotein in African trypanosomes. The p67 cytoplasmic domain (CD) is both necessary and sufficient for lysosomal targeting in procyclic insect-stage parasites. The p67CD contains two [DE]XXXL[LI]-type dileucine motifs, which function as lysosomal targeting signals in mammalian cells. Using a green fluorescent protein fusion to the p67 transmembrane and cytoplasmic domains as a reporter system, we investigated the role of these motifs in lysosomal targeting in procyclic trypanosomes. Pulse-chase turnover studies, steady-state immunolocalization and quantitative flow cytometry all gave consistent results. Mutagenesis of the membrane-distal dileucine motif impairs lysosomal trafficking leading to partial appearance of the reporter on the cell surface. Mutagenesis of the membrane-proximal motif has little effect on proper targeting. Simultaneous mutagenesis of both motifs results in quantitative delivery to the cell surface. Thus, the distal motif plays a dominant role, but both dileucine motifs are necessary for maximal lysosomal targeting. Additional studies suggest that the upstream acidic residues in each motif influence lysosomal targeting and may also affect forward trafficking in the early secretory pathway. These results strongly suggest an evolutionary conservation in lysosomal trafficking mechanisms in the ancient eukaryote Trypanosoma brucei.  相似文献   

5.
Glucose transporter 8 (GLUT8) contains a cytoplasmic N-terminal dileucine motif and localizes to a thus far unidentified intracellular compartment. Translocation of GLUT8 to the plasma membrane (PM) was found in insulin-treated mouse blastocysts. Using overexpression of GLUT8 in adipocytes and neuronal cells however, insulin treatment or depolarization of the cells did not lead to GLUT8 PM translocation in other studies. In addition, other experiments showing dynamin-dependent endocytosis of GLUT8 suggested that GLUT8 recycles between an endosomal compartment and the PM. To reveal the functional/physiological role of GLUT8, we studied its subcellular localization in 3T3L1, HEK293 and CHO cells. We show that GLUT8 does not co-localize with GLUT4 and does not redistribute to the PM after treatment with insulin, ionophores or okadaic acid in these cell lines. Once endocytosed, GLUT8 does not recycle to the PM. GLUT8 localizes to late endosomes and lysosomes. An interspecies GLUT8 - sequence alignment revealed the presence of a highly conserved late endosomal/lysosomal-targeting motif ([DE]XXXL[LI]). Changing the glutamate to arginine as found in GLUT4 (RRXXXLL) alters GLUT8 endocytosis and retains the transporter at the PM. Furthermore, sorting GLUT8 to late endosomes/lysosomes does not require prior presence of GLUT8 at the PM followed by its endocytosis. In summary, GLUT8 does not reside in a recycling vesicle pool and is distinct from GLUT4. From our data, we postulate a role for GLUT8 in transport of hexoses across intracellular membranes, for example in specific compartments of GLUT8 expression such as the acrosome of mature spermatozoa or secretory granules in neurons. Furthermore, a role for GLUT8 in hexose transport across the lysosomal membrane, a transport mechanism that has long been suggested but unexplained, is discussed.  相似文献   

6.
《The Journal of cell biology》1995,130(5):1071-1079
In adipose and muscle cells, insulin stimulates a rapid and dramatic increase in glucose uptake, primarily by promoting the redistribution of the GLUT4 glucose transporter from its intracellular storage site to the plasma membrane. In contrast, the more ubiquitously expressed isoform GLUT1 is localized at the cell surface in the basal state, and shows a less dramatic translocation in response to insulin. To identify sequences involved in the differential subcellular localization and hormone-responsiveness of these isoforms, chimeric GLUT1/GLUT4 transporters were stably expressed in mouse 3T3-L1 adipocytes. The NH2 terminus of GLUT4 contains sequences capable of sequestering the transporter inside the cell, although not in an insulin-sensitive pool. In contrast, the COOH-terminal 30 amino acids of GLUT4 are sufficient for its correct localization to an intracellular storage pool which translocates to the cell surface in response to insulin. The dileucine motif within this domain, which is required for intracellular sequestration of chimeric transporters in fibroblasts, is not critical for targeting to the hormone-responsive compartment in adipocytes. Analysis of rates of internalization of chimeric transporter after the removal of insulin from cells, as well as the subcellular distribution of transporters in cells unexposed to or treated with insulin, leads to a three-pool model which can account for the data.  相似文献   

7.
Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2β), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2β. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2β. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2β. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2β for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication.  相似文献   

8.
Giardia lamblia is an early branching protist that possesses peripheral vacuoles (PVs) with characteristics of lysosome-like organelles, located underneath the plasma membrane. In more evolved cells, lysosomal protein trafficking is achieved by cargo recognition involving adaptor protein (AP) complexes that recognize specific amino acid sequences (tyrosine and/or dileucine motifs) within the cytoplasmic tail of membrane proteins. Previously, we reported that Giardia has a tyrosine-based sorting system, which mediates the targeting of a membrane-associated cysteine protease (encystation-specific cysteine protease, ESCP) to the PVs. Here, we show that Giardia AP1 mediates the transport of ESCP and the soluble acid phosphatase (AcPh) to the PVs. By using the yeast two-hybrid assay we found that the ESCP tyrosine-based motif interacts specifically with the medium subunit of AP1 (Gimicroa). Hemagglutinin-tagged Gimicroa colocalizes with ESCP and AcPh and coimmunoprecipitates with clathrin, suggesting that protein trafficking toward the PVs is clathrin-adaptin dependent. Targeted disruption of Gimicroa results in mislocalization of ESCP and AcPh but not of variant-specific surface proteins. Our results suggest that, unlike mammalian cells, only AP1 is involved in anterograde protein trafficking to the PVs in Giardia. Moreover, even though Giardia trophozoites lack a morphologically discernible Golgi apparatus, the presence of a clathrin-adaptor system suggests that this parasite possess a primitive secretory organelle capable of sorting proteins similar to that of more evolved cells.  相似文献   

9.
CLN3 is a transmembrane protein with a predominant localization in lysosomes in non-neuronal cells but is also found in endosomes and the synaptic region in neuronal cells. Mutations in the CLN3 gene result in juvenile neuronal ceroid lipofuscinosis or Batten disease, which currently is the most common cause of childhood dementia. We have recently reported that the lysosomal targeting of CLN3 is facilitated by two targeting motifs: a dileucine-type motif in a cytoplasmic loop domain and an unusual motif in the carboxyl-terminal cytoplasmic tail comprising a methionine and a glycine separated by nine amino acids (Kyttala, A., Ihrke, G., Vesa, J., Schell, M. J., and Luzio, J. P. (2004) Mol. Biol. Cell 15, 1313-1323). In the present study, we investigated the pathways and mechanisms of CLN3 sorting using biochemical binding assays and immunofluorescence methods. The dileucine motif of CLN3 bound both AP-1 and AP-3 in vitro, and expression of mutated CLN3 in AP-1- or AP-3-deficient mouse fibroblasts showed that both adaptor complexes are required for sequential sorting of CLN3 via this motif. Our data indicate the involvement of complex sorting machinery in the trafficking of CLN3 and emphasize the diversity of parallel and sequential sorting pathways in the trafficking of membrane proteins.  相似文献   

10.
The clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxx phi and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxx phi motifs bind to the mu subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the mu or beta subunits of these adaptors as well as the gamma/sigma1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties. We report that the gamma/sigma1 or alpha/sigma2 hemicomplexes bound the dileucine-based motifs of several proteins quite strongly, whereas binding by the beta1/mu1 and beta2/mu2 hemicomplexes, and the individual beta or mu subunits, was extremely weak or undetectable. The gamma/sigma1 and alpha/sigma2 hemicomplexes displayed substantial differences in their preference for particular dileucine-based motifs. Most strikingly, an aspartate at position -4 compromised binding to the gamma/sigma1 hemicomplex, whereas minimally affecting binding to alpha/sigma2. There was an excellent correlation between binding to the alpha/sigma2 hemicomplex and in vivo internalization mediated by the dileucine-based sorting signals. These findings provide new insights into the trafficking mechanisms of D/EXXXL[LI]-mediated sorting signals.  相似文献   

11.
Insulin-regulated aminopeptidase (IRAP, also termed vp165) is known to be localized on the GLUT4-containing vesicles and to be recruited to the plasma membrane after stimulation with insulin. The cytoplasmic region of IRAP contains two dileucine motifs and acidic regions, one of which (amino acid residues 55-82) is reportedly involved in retention of GLUT4-containing vesicles. The region of IRAP fused with glutathione-S-transferase [GST-IRAP(55-82)] was incubated with lysates from 3T3-L1 adipocytes, leading to identification of long-chain, medium-chain, and short-chain acyl-coenzyme A dehydrogenases (ACDs) as the proteins associated with IRAP. The association was nearly abolished by mutation of the dileucine motif of IRAP. Immunoblotting of fractions prepared from sucrose gradient ultracentrifugation and vesicles immunopurified with anti-GLUT4 antibody revealed these ACDs to be localized on GLUT4-containing vesicles. Furthermore, 3-mercaptopropionic acid and hexanoyl-CoA, inhibitors of long-chain and medium-chain ACDs, respectively, induced dissociation of long-chain acyl-coenzyme A dehydrogenase and/or medium-chain acyl-coenzyme A dehydrogenase from IRAP in vitro as well as recruitment of GLUT4 to the plasma membrane and stimulation of glucose transport activity in permeabilized 3T3-L1 adipocytes. These findings suggest that ACDs are localized on GLUT4-containing vesicles via association with IRAP in a manner dependent on its dileucine motif and play a role in retention of GLUT4-containing vesicles to an intracellular compartment.  相似文献   

12.
We have recently reported that following initial biosynthesis, the GLUT4 protein exits the Golgi apparatus and directly enters the insulin-responsive compartment(s) without transiting the plasma membrane. To investigate the structural motifs involved in these initial sorting events, we have generated a variety of loss-of-function and gain-of-function GLUT4/GLUT1 chimera proteins. Substitution of the GLUT4 carboxyl-terminal domain with GLUT1 had no significant effect on the acquisition of insulin responsiveness. In contrast, substitution of either the GLUT4 amino-terminal domain or the large cytoplasmic loop between transmembrane domains 6 and 7 resulted in the rapid default of GLUT4 to the plasma membrane with blunted insulin response. Consistent with these findings, substitution of the amino-terminal, cytoplasmic loop, or carboxyl-terminal domains individually into GLUT1 backbone did not recapitulate normal GLUT4 trafficking. Similarly, dual substitutions of the GLUT1 amino and carboxyl termini with GLUT4 domains or the combination of the cytoplasmic loop plus the carboxyl terminus failed to display normal GLUT4 trafficking. However, the dual replacement of the amino terminus plus the cytoplasmic loop of GLUT4 in the GLUT1 backbone resulted in a complete restoration of normal GLUT4 trafficking. Alanine-scanning mutagenesis of the GLUT4 amino terminus demonstrated that Phe(5) and Ile(8) within the FQQI motif and, to a lesser extent, Asp(12)/Gly(13) were necessary for the appropriate initial trafficking following biosynthesis. In addition, amino acids 229-271 in the large intracellular loop between transmembrane domains 6 and 7 functionally cooperated with the amino-terminal domain. These data demonstrate that initial trafficking of GLUT4 from the Golgi to the insulin-responsive GLUT4 compartment requires the functional interaction of two distinct domains.  相似文献   

13.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   

14.
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin‐sensitive store requires the GGA [Golgi‐localized, γ‐ear‐containing, ADP ribosylation factor (ARF)‐binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3‐L1 adipocytes, and that a ubiquitin‐resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans‐Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.  相似文献   

15.
Vesicular transport proteins package classical neurotransmitters for regulated exocytotic release, and localize to at least two distinct types of secretory vesicles. In PC12 cells, the vesicular acetylcholine transporter (VAChT) localizes preferentially to synaptic-like microvesicles (SLMVs), whereas the closely related vesicular monoamine transporters (VMATs) localize preferentially to large dense core vesicles (LDCVs). VAChT and the VMATs contain COOH-terminal, cytoplasmic dileucine motifs required for internalization from the plasma membrane. We now show that VAChT undergoes regulated phosphorylation by protein kinase C on a serine (Ser-480) five residues upstream of the dileucine motif. Replacement of Ser-480 by glutamate, to mimic the phosphorylation event, increases the localization of VAChT to LDCVs. Conversely, the VMATs contain two glutamates upstream of their dileucine-like motif, and replacement of these residues by alanine conversely reduces sorting to LDCVs. The results provide some of the first information about sequences involved in sorting to LDCVs. Since the location of the transporters determines which vesicles store classical neurotransmitters, a change in VAChT trafficking due to phosphorylation may also influence the mode of transmitter release.  相似文献   

16.
17.
The interaction of adaptor protein (AP) complexes with signal structures in the cytoplasmic domains of membrane proteins is required for intracellular sorting. Tyrosine- or dileucine-based motifs have been reported to bind to medium chain subunits (mu) of AP-1, AP-2, or AP-3. In the present study, we have examined the interaction of the entire 67-amino acid cytoplasmic domain of the 46-kDa mannose 6-phosphate receptor (MPR46-CT) containing tyrosine- as well as dileucine-based motifs with mu2 and mu3A chains using the yeast two-hybrid system. Both mu2 and mu3A bind specifically to the MPR46-CT. In contrast, mu3A fails to bind to the cytoplasmic domain of the 300-kDa mannose 6-phosphate receptor. Mutational analysis of the MPR46-CT revealed that the tyrosine-based motif and distal sequences rich in acidic amino acid residues are sufficient for effective binding to mu2. However, the dileucine motif was found to be one part of a consecutive complex C-terminal structure comprising tyrosine and dileucine motifs as well as clusters of acidic residues necessary for efficient binding of mu3A. Alanine substitution of 2 or 4 acidic amino acid residues of this cluster reduces the binding to mu3A much more than to mu2. The data suggest that the MPR46 is capable of interacting with different AP complexes using multiple partially overlapping sorting signals, which might depend on posttranslational modifications or subcellular localization of the receptor.  相似文献   

18.
Sorting signals for cargo selection into coated vesicles are usually in the form of short linear motifs. Three motifs for clathrin‐mediated endocytosis have been identified: YXXΦ, [D/E]XXXL[L/I] and FXNPXY. To search for new endocytic motifs, we made a library of CD8 chimeras with random sequences in their cytoplasmic tails, and used a novel fluorescence‐activated cell sorting (FACS)‐based assay to select for endocytosed constructs. Out of the five tails that were most efficiently internalized, only one was found to contain a conventional motif. Two contain dileucine‐like sequences that appear to be variations on the [D/E]XXXL[L/I] motif. Another contains a novel internalization signal, YXXXΦN, which is able to function in cells expressing a mutant µ2 that cannot bind YXXΦ, indicating that it is not a variation on the YXXΦ motif. Similar sequences are present in endogenous proteins, including a functional YXXXΦN (in addition to a classical YXXΦ) in cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4). Thus, the repertoire of endocytic motifs is more extensive than the three well‐characterized sorting signals.  相似文献   

19.
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.  相似文献   

20.
A key function of the Nef protein of immunodeficiency viruses is the downregulation of the T-cell and macrophage coreceptor, CD4, from the surfaces of infected cells. CD4 downregulation depends on a conserved (D/E)XXXL(L/I)-type dileucine motif in the C-terminal, flexible loop of Nef, which mediates binding to the clathrin adaptor complexes AP-1, AP-2, and AP-3. We now report the identification of a consensus (D/E)D motif within this loop as a second, conserved determinant of interaction of Nef with AP-2, though not with AP-1 and AP-3. Mutations in this diacidic motif abrogate both AP-2 binding and CD4 downregulation. We also show that a dileucine motif from tyrosinase, both in its native context and in the context of Nef, can bind to AP-2 independently of a diacidic motif. These results thus identify a novel type of AP-2 interaction determinant, support the notion that AP-2 is the key clathrin adaptor for the downregulation of CD4 by Nef, and reveal a previously unrecognized diversity among dileucine sorting signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号