首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress acutely increases the permeability of the vascular endothelium to large molecules that would not otherwise cross the barrier. Ascorbic acid is an antioxidant that tightens the endothelial permeability barrier, so we tested whether it might also prevent the increase in endothelial permeability due to cellular oxidative stress. Treatment of EA.hy926 endothelial cells cultured on filter inserts with H(2) O(2) , menadione, and buthionine sulfoximine increased endothelial permeability to radiolabeled inulin. Short-term ascorbate loading of the cells to what are likely physiologic concentrations of the vitamin by treating them with dehydroascorbate prevented the increase in endothelial permeability due to these agents. The nonphysiologic antioxidants dithiothreitol and tempol also prevented increases in endothelial barrier permeability induced by the agents. These results suggest that oxidative stress induced directly by oxidants or indirectly by glutathione depletion impairs endothelial barrier function and that intracellular ascorbate may serve to prevent this effect.  相似文献   

2.
3.

Background

Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity.

Methods

Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC.

Results

CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability.

Conclusions

CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis.  相似文献   

4.
Oxidized LDL (oxLDL) depletes caveolae of cholesterol, resulting in the displacement of endothelial nitric-oxide synthase (eNOS) from caveolae and impaired eNOS activation. In the present study, we determined if the class B scavenger receptors, CD36 and SR-BI, are involved in regulating nitric-oxide synthase localization and function. We demonstrate that CD36 and SR-BI are expressed in endothelial cells, co-fractionate with caveolae, and co-immunoprecipitate with caveolin-1. Co-incubation of cells with 10 microgram/ml high density lipoprotein (HDL) prevented oxLDL-induced translocation of eNOS from caveolae and restored acetylcholine-induced nitric-oxide synthase stimulation. Acetylcholine caused eNOS activation in cells incubated with 10 microgram/ml oxLDL (10-15 thiobarbituric acid-reactive substances) and blocking antibodies to CD36, whereas cells treated with only oxLDL were unresponsive. Furthermore, CD36-blocking antibodies prevented oxLDL-induced redistribution of eNOS. SR-BI-blocking antibodies were used to demonstrate that the effects of HDL are mediate by SR-BI. HDL binding to SR-BI maintained the concentration of caveola-associated cholesterol by promoting the uptake of cholesterol esters, thereby preventing oxLDL-induced depletion of caveola cholesterol. We conclude that CD36 mediates the effects of oxLDL on caveola composition and eNOS activation. Furthermore, HDL prevents oxLDL from decreasing the capacity for eNOS activation by preserving the cholesterol concentration in caveolae and, thereby maintaining the subcellular location of eNOS.  相似文献   

5.
Triglyceride-rich lipoprotein (TGRL) lipolysis products provide a pro-inflammatory stimulus that can alter endothelial barrier function. To probe the mechanism of this lipolysis-induced event, we evaluated the pro-inflammatory potential of lipid classes derived from human postprandial TGRL by lipoprotein lipase (LpL). Incubation of TGRL with LpL for 30 min increased the saturated and unsaturated FFA content of the incubation solutions significantly. Furthermore, concentrations of the hydroxylated linoleates 9-hydroxy ocatadecadienoic acid (9-HODE) and 13-HODE were elevated by LpL lipolysis, more than other measured oxylipids. The FFA fractions elicited pro-inflammatory responses inducing TNFalpha and intracellular adhesion molecule expression and reactive oxygen species (ROS) production in human aortic endothelial cells (HAECs). The FFA-mediated increase in ROS was blocked by both the cytochrome P450 2C9 inhibitor sulfaphenazole and NADPH oxidase inhibitors. Compared with linoleate, 13-HODE was found to be a more potent inducer of ROS production in HAECs, an activity that was insensitive to both NADPH oxidase and cytochrome P450 inhibitors. Therefore, although the oxidative metabolism of FFA in endothelial cells can produce inflammatory responses, TGRL lipolysis can also release preformed mediators of oxidative stress (e.g., HODEs) that may influence endothelial cell function in vivo by stimulating intracellular ROS production.  相似文献   

6.
7.
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.  相似文献   

8.
Effect of dipicolinic acid (pyridine 2,6-dicarboxylic acid) and pyridine compounds on the copper-dependent oxidation of human low density lipoprotein was analyzed in relation to the inhibition of copper reduction. Dipicolinic acid inhibited copper-dependent LDL oxidation completely, but the LDL oxidation was slightly inhibited by pyridine compounds with one carboxyl group at 2 or 6-position. Reduction of copper by LDL itself and ascorbate was inhibited completely by dipicolinic acid, but only partially by picolinic acid, quinolinic acid and isocinchomeronic acid with 2- or 6-carboxylic group. Pyridine compounds without 2- or 6-carboxyl group did not show any inhibitory effect on the LDL oxidation and the copper reduction. Protective effect of dipicolinic acid on the LDL oxidation was closely correlated with the copper-reducing activity. Dipicolinic acid shows an antioxidant action by the formation of a chelation complex with copper. This may have implications in understanding mechanisms of preventing LDL oxidation during the early phase of atherosclerosis.  相似文献   

9.
Stable nitroxide radicals have been considered as therapeutic antioxidants because they can scavenge more toxic radicals in biologic systems. However, as radicals they also have the potential to increase oxidant stress in cells and tissues. We studied the extent to which this occurs in cultured EA.hy926 endothelial cells exposed to the nitroxide Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl). Tempol was rapidly reduced by the cells, as manifest by an increase in the ability of the cells to reduce extracellular ferricyanide and by disappearance of the Tempol EPR signal. Cells loaded with ascorbic acid, which directly reacts with Tempol, showed increased rates of Tempol-dependent ferricyanide reduction, and a more rapid loss of the Tempol EPR signal than cells not containing ascorbate. In this process, intracellular ascorbate was oxidized, and was depleted at lower Tempol concentrations than was GSH, another important intracellular low molecular weight antioxidant. Further evidence that Tempol concentrations of 100-1000 μM induced an oxidant stress was that it caused an increase in the oxidation of dihydrofluorescein in cells and inhibited ascorbate transport at concentrations as low as 50-100 μM. The presence of intracellular ascorbate both prevented dihydrofluorescein oxidation and spared GSH from oxidation by Tempol. Such sparing was not observed when GSH was depleted by other mechanisms, indicating that it was likely due to protection against oxidant stress. These results show that whereas Tempol may scavenge other more toxic radicals, care must be taken to ensure that it does not itself induce an oxidant stress, especially with regard to depletion of ascorbic acid.  相似文献   

10.
《Reproductive biology》2020,20(3):396-401
The aims of this study were to investigate whether serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), paraoxonase-1(PON-1) and hydroperoxide (LOOH) levels are altered in women with polycystic ovary syndrome (PCOS) and also to determine if hyperandrogenism, insulin resistance (IR) and Anti-Müllerian Hormone (AMH) are associated with endothelial dysfunction in PCOS. A total of 46 women with PCOS and 46 non-PCOS healthy controls were recruited. Women with PCOS had significantly higher sLOX-1, oxLDL and LOOH concentrations than non-PCOS women [6.16 (3.92−13.95) vs 1.37 (0.63−4.43) ng/mL, p < 0.001; 6.48 ± 1.03 vs 3.16 ± 1.02 μU/L, p < 0.001; 2.45 (1.45−3.45) vs 1.06 (0.64−1.56) μmol/L, p < 0.001]. The mean PON-1 level of PCOS group was lower than non-PCOS group (69.47 ± 10.75 vs 104.08 ± 21.43 U/mL, p < 0.001). There was no significant difference in terms of the sLOX-1, oxLDL, LOOH and PON-1 levels between normal weight and overweight PCOS women. On univariate logistic regression analysis, Ferriman-Gallwey scale (FGS), HOMA-IR and AMH were an independent predictors of high risk group of endothelial dysfunction markers (HR-EDm). Age and BMI were not associated with HR-EDm. When incorporated into the multivariate model, endotelial dysfunction markers independently correlated with clinical hyperandrogenism (FGS) but not with AMH. In conclusion, our results indicated that an increased concentration of sLOX-1 might be an early predictor of endothelial damage in patients with PCOS. Women with PCOS have elevated sLOX-1, oxLDL, LOOH and decreased PON-1 levels, independent of BMI. Endothelial dysfunction in women with PCOS is associated with hyperandrogenism. Further studies are required to confirm our findings.  相似文献   

11.
We examined the role of intracellular glutathione (GSH) in the defense of endothelial cells against oxidized low density lipoprotein (OX-LDL). Incubation of cultured bovine endothelial cells with OX-LDL produced a loss of intracellular GSH, followed by lysis. A decrease in the cellular stores of GSH by treating the endothelial cells with buthionine sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, increased the susceptibility of endothelial cells to lysis by OX-LDL. In contrast, an increase in cellular GSH level by treatment with L-2-oxothiazolidine-4-caboxylate, an effective intracellular cysteine delivery agent, reduced the toxicity of OX-LDL. These findings suggest that intracellular GSH plays an important role in the defense of endothelial cells against OX-LDL, and that the mechanism of OX-LDL toxicity is related to the depletion of intracellular GSH.  相似文献   

12.
We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3–5 μM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1–2 μM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.  相似文献   

13.
The possible involvement of lecithin-cholesterol acyltransferase (LCAT) in the metabolism of oxidized phosphatidylcholine (PC) in plasma was investigated. A variety of oxidized products are formed from PC following oxidation of low density lipoproteins (LDL). A significant increase in LDL oxidation levels in patients with familial LCAT deficiency (FLD) has been previously demonstrated by a sensitive sandwich ELISA for oxidized LDL using the monoclonal antibody DLH3 which recognizes oxidized products of PC. In the present study, we found that LCAT produces various metabolites from oxidized PC and that oxidized PC molecules in LDL particles serve as substrates. When the neutral lipid fraction was separated by TLC after the incubation of oxidized 1-palmitoyl-2-[1-14C]linoleoyl PC with human plasma, a number of radioactive bands were formed in addition to cholesteryl ester. These products were not formed from native 1-palmitoyl-2-[1-14C]linoleoyl PC. Plasma from FLD patients also failed to form the additional products from oxidized PC. The addition of dithio-bis(nitrobenzoate) (DTNB), an LCAT inhibitor, or the inactivation of LCAT activity by treating the plasma at 56 degrees C for 30 min abolished the generation of these products from oxidized PC. The activity was recovered in the high density lipoprotein (HDL) fraction but not in the LDL fraction separated from normal plasma. When 1-palmitoyl-2-[1-14C](9-oxononanoyl) PC and 1-stearoyl-2-[1-14C](5-oxovaleroyl)PC, PC oxidation products that contain short chain aldehydes, were incubated with human plasma, radioactive products in the neutral lipid fraction were observed on TLC. LDL containing oxidized PC was measured by sandwich ELISA using an anti-apolipoprotein B antibody and DLH3. The reconstituted oxidized PC-LDL particles were found to have lost their ability to bind DLH3 upon incubation with HDL, while the reactivity of the reconstituted oxidized PC-LDL remained unchanged in the presence of DTNB. These results suggest that LCAT is capable of metabolizing a variety of oxidized products of PC and preventing the accumulation of oxidized PC in circulating LDL particles.  相似文献   

14.
Oridonin, a natural diterpenoid compound extracted from a Chinese herb, has been proved to exert anti-oxidative stress effects in various disease models. The aim of the present study was to investigate the protective effects of oridonin on oxidative stress-induced endothelial injury in ischaemic stroke. We found oridonin repaired blood-brain barrier (BBB) integrity presented with upregulation of tight junction proteins (TJ proteins) expression, inhibited the infiltration of periphery inflammatory cells and neuroinflammation and thereby reduced infarct volume in ischaemic stroke mice. Furthermore, our results showed that oridonin could protect against oxidative stress-induced endothelial injury via promoting nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2). The specific mechanism could be the activation of AKT(Ser473)/GSK3β(Ser9)/Fyn signalling pathway. Our findings revealed the therapeutic effect and mechanism of oridonin in ischaemic stroke, which provided fundamental evidence for developing the extracted compound of Chinese herbal medicine into an innovative drug for ischaemic stroke treatment.  相似文献   

15.
We evaluated the role of iron in the toxicity of oxidized low density lipoprotein (Ox-LDL) to cultured vascular endothelial cells. Exposure of the endothelial cells to Ox-LDL led to cell lysis as judged by the release of lactate dehydrogenase into the medium. The presence of deferoxamine, an iron chelator, in the reaction medium containing Ox-LDL prevented the lysis of cells by Ox-LDL. Pretreatment of the cells with deferoxamine also reduced their susceptibility to the cytotoxicity of Ox-LDL. The formation of thiobarbituric acid-reacting substances (TBARS) was observed in the cells exposed to Ox-LDL. Pretreatment of cells with deferoxamine reduced the formation of TBARS which was induced by Ox-LDL. These observations suggest that the toxicity of Ox-LDL to cultured endothelial cells involves the lipid peroxidation of cellular membrane catalyzed by iron derived from the target (endothelial) cells.  相似文献   

16.
Vitamin C, or ascorbic acid, decreases paracellular endothelial permeability in a process that requires rearrangement of the actin cytoskeleton. To define the proximal mechanism of this effect, we tested whether it might involve enhanced generation and/or sparing of nitric oxide (NO) by the vitamin. EA.hy926 endothelial cells cultured on semi-porous filter supports showed decreased endothelial barrier permeability to radiolabeled inulin in response to exogenous NO provided by the NO donor spermine NONOATE, as well as to activation of the downstream NO pathway by 8-bromo-cyclic GMP, a cell-penetrant cyclic GMP analog. Inhibition of endothelial nitric oxide synthase (eNOS) with Nω-nitro-l-arginine methyl ester increased endothelial permeability, indicating a role constitutive NO generation by eNOS in maintaining the permeability barrier. Inhibition of guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one also increased endothelial permeability and blocked barrier tightening by spermine NONOATE. Loading cells with what are likely physiologic concentrations of ascorbate decreased endothelial permeability. This effect was blocked by inhibition of either eNOS or guanylate cyclase, suggesting that it involved generation of NO by eNOS and subsequent NO-dependent activation of guanylate cyclase. These results show that endothelial permeability barrier function depends on constitutive generation of NO and that ascorbate-dependent tightening of this barrier involves maintaining NO through the eNOS/guanylate cyclase pathway.  相似文献   

17.
目的: 探讨睾酮、氧化低密度脂蛋白(OX-LDL)对内皮细胞株ECV-304合成分泌肾上腺髓质素(ADM)的影响.方法: 在细胞培养液中分别加入不同浓度的睾酮、OX-LDL及睾酮和OX-LDL培养24 h,放射免疫法检测培养液上清及细胞内ADM的含量.结果: OX-LDL能明显刺激内皮细胞合成、分泌ADM;睾酮呈剂量依赖方式刺激内皮细胞合成、分泌ADM,但睾酮与OX-LDL合用对内皮细胞合成、分泌ADM的影响减弱.结论: 睾酮可能对OX-LDL损伤内皮细胞具有保护作用.  相似文献   

18.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

19.
Impairment of endothelial cells by oxidized low density lipoprotein (OxLDL) is believed to be the first step in atherogenesis. It is also believed that oxidative stress/antioxidant imbalance is involved in the cell damage by OxLDL. However, little is known about the interaction between OxLDL and antioxidants. In this study, we show that treatment of human vascular endothelial cells with OxLDL caused a gradual increase of glutathione (gamma-glutamylcysteinyl glycine, GSH) levels in 24 h. OxLDL increased the intracellular levels of reactive oxygen species (ROS) and stimulated the expression of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme for the GSH synthesis, the mitogen-activated protein kinase (MAPK) activity, and the AP-1-DNA binding activity. The luciferase activity of gamma-GCS promoter containing AP-1 site was activated by OxLDL. Collectively, OxLDL induces gamma-GCS expression mediated by AP-1 resulting in an increase of GSH levels. The MAPK activity stimulated by ROS may be involved in the activation of AP-1. The increase in GSH by OxLDL may afford cellular protection against OxLDL-induced oxidative stress.  相似文献   

20.
Endothelial cells are exposed to potentially damaging reactive oxygen species generated both within the cells and in the bloodstream and underlying vessel wall. In this work, we studied the ability of ascorbic acid to protect cultured human-derived endothelial cells (EA.hy926) from oxidant stress generated by the redox cycling agent menadione. Menadione caused intracellular oxidation of dihydrofluorescein, which required the presence of D-glucose in the incubation medium, and was inhibited by intracellular ascorbate and desferrioxamine. At concentrations of 100 microM and higher, menadione depleted the cells of both GSH and ascorbate, and ascorbate loading partially prevented the decrease in GSH due to menadione. Menadione increased L-arginine uptake by the cells, but inhibited endothelial nitric oxide synthase, an effect that was prevented by acute loading with ascorbate. Ascorbate blunts menadione-induced oxidant stress in EA.hy926 cells, which may help to preserve nitric oxide synthase activity under conditions of excessive oxidant stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号