首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis is a chronic inflammatory disease and represents the main cause of death in the industrialized world. Metabolites of the arachidonic acid derived from the 5-lipoxygenase pathway are known as leukotrienes that mediate various inflammatory processes during atherogenesis. Leukotriene B4 elicits the overexpression of several proinflammatory proteins, promotes chemotaxis and foam cell formation via BLT receptors. Currently, little is known about the implications of the BLT2 receptor in atherogenesis. Here, we tested whether selective inhibition of this receptor influences the progression of atherosclerosis in mice. Apolipoprotein-E deficient mice were fed a high-fat, cholesterol-rich diet to create atherosclerotic conditions (each group n?=?9). Simultaneously, mice received the pharmacologic BLT2 inhibition (Ly) by intraperitoneal injection every second day 5?mg/kg bw or vehicle. After 8 weeks, mice were killed and experiments were performed. Vascular superoxide release was diminished in mice treated with Ly compared with the control group (68?±?15 vs 131?±?20 RLU, P?=?0.01), as measured by L012 assay. Next, endothelial function was assessed by organ chamber experiments. Endothelial-dependent relaxation was improved in mice treated with the BLT2 receptor antagonist. To determine whether selective inhibition of the BLT2 receptor affects the atherosclerotic plaque growth, immunohistochemical stainings of the aortic root were performed. Oil red O staining revealed no significant differences between both groups (36?±?3% vs 38?±?3%). Monocyte infiltration into the vessel wall was analyzed using Moma-2 staining. No significant differences were observed between both groups (31?±?3% vs 34?±?2%). Selective inhibition of the BLT2 receptor in mice reduces the release of vascular reactive oxygen species and improves endothelial function in mice. Further experiments are necessary in order to obtain tissue-specific and mechanistical insights.  相似文献   

2.
The development of nontoxic but effective radioprotectors is needed because of the increasing risk of human exposure to ionizing radiation. We have reported that α-lipoic acid confers considerable radio-protective effect in mouse tissues when given prior to x-irradiation. In the present study, α-lipoic acid supplementation prior to x-irradiation with 4 and 6 Gy significantly inhibited the radiation-induced decline in total antioxidant capacity (TAC) of plasma. Radiation-induced decline in non-protein sulfhydryl content (NPSH) of different tissues, namely, brain, liver, spleen, kidney, and testis, was also ameliorated significantly at both 4 and 6 Gy doses. Maximal augmentation of radiation-induced protein carbonyl content was observed in spleen followed by brain, kidney, testis, and liver. Maximal protection in terms of carbonyl content was observed in spleen (116%) at 6 Gy dose, and minimal protection was found in liver (22.94%) at 4 Gy dose. Maximal increase in MDA (malondialdehyde) content was observed in brain, followed by testis, spleen, kidney, and liver. Protection by α-lipoic acid pretreatment in terms of MDA content was maximal in brain (51.67%) and minimal in spleen. The findings support the idea that α-lipoic acid is a free-radical scavenger and a potent antioxidant.  相似文献   

3.
4.
Usuki S  Tsai YY  Morikawa K  Nonaka S  Okuhara Y  Kise M  Yu RK 《PloS one》2011,6(12):e28693

Background

The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown.Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress.

Methodology/Principal Findings

In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells.

Conclusion/Significance

These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy.  相似文献   

5.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

6.
7.
8.
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa?/? and Xpc?/? exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc?/? mice, in contrary to Xpa?/? and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc?/? mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.  相似文献   

9.
10.
Ectopic fat accumulation in the kidneys causes oxidative stress, inflammation and cell death. Dehydrozingerone (DHZ) is a curcumin analog that exhibits antitumour, antioxidant and antidiabetic effects. However, the efficacy of DHZ in diabetic nephropathy (DN) is unknown. Here, we verified the efficacy of DHZ on DN. We divided the experimental animals into three groups: regular diet, 60% high-fat diet (HFD) and HFD with DHZ for 12 weeks. We analysed levels of renal triglycerides and urinary albumin and albumin-creatinine ratio, renal morphological changes and molecular changes via real-time polymerase chain reaction and immunoblotting. Furthermore, high glucose (HG)- or palmitate (PA)-stimulated mouse mesangial cells or mouse podocytes were treated with DHZ for 24 h. As a result, DHZ markedly reduced renal glycerol accumulation and albuminuria excretion through improvement of thickened glomerular basement membrane, podocyte loss and slit diaphragm reduction. In the renal cortex in the HFD group, phospho-AMPK and nephrin expression reduced, whereas arginase 2 and CD68 expression increased; however, these changes were recovered after DHZ administration. Increased reactive oxygen species (ROS) stimulated by HG or PA in podocytes was inhibited by DHZ treatment. Collectively, these findings indicate that DHZ ameliorates DN via inhibits of lipotoxicity-induced inflammation and ROS formation.  相似文献   

11.
12.
Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.  相似文献   

13.
Liu  Xiaomei  Yi  Mingji  Jin  Rong  Feng  Xueying  Ma  Liang  Wang  Yanxia  Shan  Yanchun  Yang  Zhaochuan  Zhao  Baochun 《Molecular biology reports》2020,47(5):3735-3744
Molecular Biology Reports - In this study, a mice model of obesity-asthma was established. We investigated the correlation between oxidative stress and NF-κB signaling pathway in the lung...  相似文献   

14.
Objectives: The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation.

Methods: The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay.

Results: Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks.

Discussion: The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.  相似文献   

15.
Bisphenol A (BPA), an endocrine and metabolic disruptor, is widely used to manufacture polycarbonate plastics and epoxy resins. Accumulating evidence suggests that paternal BPA exposure adversely affects male germlines and results in atypical reproductive phenotypes that might persist for generations to come. Our study investigated this exposure on testicular architecture and sperm quality in mouse offspring, and characterised underlying molecular mechanism(s). A total of 18 immature male Swiss albino mice (3.5 weeks old) were randomly divided into three groups and treated as follows: Group I, no treatment (sham control); Group II, sterile corn oil only (vehicle control); Group III, BPA (400 μg/kg) in sterile corn oil. At 9.5 weeks old, F0 males were mated with unexposed females. F0 offspring (F1 generation) were monitored for postnatal development for 10 weeks. At 11.5 weeks old, the animals were sacrificed to examine testicular architecture, sperm parameters, including DNA integrity, and oxidative stress biomarkers. Results showed that BPA significantly induced changes in the body and testis weights of the F0 and F1 generation BPA lineages compared to F0 and F1 generation control lineages. A decrease in sperm count and motility with further, increased sperm abnormalities, no or few sperm DNA alterations and elevated levels of MDA, PC and NO were recorded. Similar effects were found in BPA exposed F0 males, but were more pronounced in the F0 offspring. In addition, BPA caused alterations in the testicular architecture. These pathological changes extended transgenerationally to F1 generation males’ mice, but the pathological changes were more pronounced in the F1 generation. Our findings demonstrate that the biological and health BPA impacts do not end in paternal adults, but are passed on to offspring generations. Hence, linking observed testis and sperm abnormalities in the F1 generation to BPA exposure of their parental line was evident in this work. The findings also illustrate that oxidative stress appears to be a molecular component of the testis and sperm pathologies.  相似文献   

16.
Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.  相似文献   

17.
Investment in reproduction is costly and frequently decreases survival or future reproductive success. However, the proximate underlying causes for this are largely unknown. Oxidative stress has been suggested as a cost of reproduction and several studies have demonstrated changes in antioxidants with reproductive investment. Here, we test whether oxidative stress is a consequence of reproduction in female house mice (Mus musculus domesticus), which have extremely high energetic demands during reproduction, particularly through lactation. Assessing oxidative damage after a long period of reproductive investment, there was no evidence of increased oxidative stress, even when females were required to defend their breeding territory. Instead, in the liver, markers of oxidative damage (malonaldehyde, protein thiols and the proportion of glutathione in the oxidized form) indicated lower oxidative stress in reproducing females when compared with non-reproductive controls. Even during peak lactation, none of the markers of oxidative damage indicated higher oxidative stress than among non-reproductive females, although a positive correlation between protein oxidation and litter mass suggested that oxidative stress may increase with fecundity. Our results indicate that changes in redox status occur during reproduction in house mice, but suggest that females use mechanisms to cope with the consequences of increased energetic demands and limit oxidative stress.  相似文献   

18.
Coenzyme Q10 (CoQ) is an endogenously synthesised compound that acts as an electron carrier in the mitochondrial electron transport chain. The presence of adequate tissue concentrations of CoQ may be important in limiting oxidative and nitrosative damage in vivo. Oxidative and nitrosative stress are likely to be elevated in conditions such as diabetes and hypertension. In these conditions elevated oxidative and nitrosative stress within the arterial wall may contribute to increased blood pressure and vascular dysfunction. The major focus of this review is the potential of CoQ to improve vascular function and lower blood pressure. Although there is substantial indirect support for the putative mechanism of effect of CoQ on the vascular system, to date there is little direct support for an effect of CoQ on in vivo markers of oxidative or nitrosative stress. The limited data available from studies in animal models and from human intervention studies are generally consistent with a benefit of CoQ on vascular function and blood pressure. The observed effects of CoQ on these endpoints are potentially important therapeutically. However, before any firm clinical recommendations can be made about CoQ supplementation, further intervention studies in humans are needed to investigate the effects of CoQ on vascular function, blood pressure and cardiovascular outcomes. The particularly relevant groups of patients for these studies are those with insulin resistance, type 2 diabetes, hypertension and the metabolic syndrome.  相似文献   

19.
Pioglitazone is one of the thiazolidinediones (TZDs) and an insulin-sensitive drug for type 2 diabetes. In our previous study, a combination of pioglitazone and fish oil rich in n-3 polyunsaturated fatty acids (PUFAs) was shown to inhibit pioglitazone-induced side effects, such as accumulation of subcutaneous fat and body weight gain. However, the effects of the discontinuation of fish oil after combination treatment with TZD and fish oil are not clear. In this study, discontinuation of fish oil for 4 weeks showed several unfavorable effects: (1) return of plasma adiponectin level, (2) reversal of the inhibition of lipogenesis and activation of fatty acid β-oxidation in liver, (3) increase in hypertrophic adipocytes in epidydimal white adipose tissue (WAT) and (4) accumulation of lipids in brown adipose tissue (BAT). However, insulin resistance was ameliorated by pioglitazone with or without fish oil treatment and the discontinuation of fish oil. These findings indicate that discontinuation of n-3 PUFA after combination therapy with TZDs adversely affects lipid metabolism and energy homeostasis in liver, epididymal WAT and BAT.  相似文献   

20.
《Free radical research》2013,47(5):599-606
Abstract

Vascular dysfunction is one of the major causes of cardiovascular (CV) mortality and increases with age. Epidemiological studies suggest that Mediterranean diets and high nut consumption reduce CV disease risk and mortality while increasing plasma α-tocopherol. Therefore, we have investigated whether almond supplementation can improve oxidative stress markers and CV risk factors over 4 weeks in young and middle-aged men.

Healthy middle-aged men (56 ± 5.8 years), healthy young men (22.1 ± 2.9 years) and young men with two or more CV risk factors (27.3 ± 5 years) consumed 50 g almond/day for 4 weeks. A control group maintained habitual diets over the same period.

Plasma α-tocopherol/cholesterol ratios were not different between groups at baseline and were significantly elevated by almond intervention with 50 g almond/day for 4 weeks (p < 0.05). Plasma protein oxidation and nitrite levels were not different between groups whereas, total-, HDL- and LDL-cholesterols and triglycerides were significantly higher in healthy middle-aged and young men with CV risk factors but were not affected by intake. In the almond-consuming groups, flow-mediated dilatation (FMD) improved and systolic blood pressure reduced significantly after 50 g almonds/day for 4 weeks, but diastolic blood pressure reduced only in healthy men.

In conclusion, a short-term almond-enriched diet can increase plasma α-tocopherol and improve vascular function in asymptomatic healthy men aged between 20 and 70 years without any effect on plasma lipids or markers of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号