首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(6):743-749
Abstract

Elevated levels of the heme enzyme myeloperoxidase (MPO) are associated with adverse cardiovascular outcomes. MPO predominantly catalyzes formation of the oxidants hypochlorous acid (HOCl) from Cl?, and hypothiocyanous acid (HOSCN) from SCN?, with these anions acting as competitive substrates. HOSCN is a less powerful and more specific oxidant than HOCl, and selectively targets thiols; such damage is largely reversible, unlike much HOCl-induced damage. We hypothesized that increased plasma SCN?, and hence HOSCN formation instead of HOCl, may decrease artery wall damage. This was examined using high-fat fed atherosclerosis-prone LDLR–/– mice transgenic for human MPO, with and without SCN? (10 mM) added to drinking water. Serum samples, collected fortnightly, were analyzed for cholesterol, triglycerides, thiols, MPO, and SCN?; study-long exposure was calculated by area under the curve (AUC). Mean serum SCN? concentrations were elevated in the supplemented mice (200–320 μM) relative to controls (< 120 μM). Normalized aortic root plaque areas at sacrifice were 26% lower in the SCN?-supplemented mice compared with controls (P = 0.0417), but plaque morphology was not appreciably altered. Serum MPO levels steadily increased in mice on the high-fat diet, however, comparison of SCN?-supplemented versus control mice showed no significant changes in MPO protein, cholesterol, or triglyceride levels; thiol levels were decreased in supplemented mice at one time-point. Plaque areas increased with higher cholesterol AUC (r = 0.4742; P = 0.0468), and decreased with increasing SCN? AUC (r = ? 0.5693; P = 0.0134). These data suggest that increased serum SCN? levels, which can be achieved in humans by dietary manipulation, may decrease atherosclerosis burden.  相似文献   

2.
Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN?, a preferred MPO substrate, with this resulting in HOSCN formation. We hypothesised that HOSCN, a thiol-specific oxidant may target the iron-sulphur cluster of aconitase (both isolated, and within primary human coronary artery endothelial cells; HCAEC) resulting in enzyme dysfunction, release of iron, and conversion of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part, the presence of increased levels of iron in human atherosclerotic lesions and contribute to increased oxidative damage and endothelial cell dysfunction in smokers. Similar reactions may occur at other sites of inflammation.  相似文献   

3.
Smokers have an elevated risk of atherosclerosis but the origin of this elevated risk is incompletely defined, though increasing evidence supports a role for the oxidant-generating enzyme myeloperoxidase (MPO). In previous studies we have demonstrated that smokers have elevated levels of thiocyanate ions (SCN(-)), relative to nonsmokers, and increased thiol oxidation, as SCN(-) is a favored substrate for MPO, and the resulting hypothiocyanous acid (HOSCN) targets thiol groups rapidly and selectively. In this study we show that increased HOSCN formation by MPO diminishes damage to nonthiol targets on both model proteins and human plasma proteins. Thus high SCN(-) levels protect against HOCl- and MPO-mediated damage to methionine, tryptophan, lysine, histidine, and tyrosine residues on proteins. Furthermore, levels of the HOCl-mediated marker compound 3-chlorotyrosine and the cross-linked product dityrosine are decreased. Plasma protein 3-chlorotyrosine levels induced by HOCl exposure in nonsmokers are elevated over the levels detected in smokers when exposed to identical oxidative insult (P<0.05), and a strong inverse correlation exists between plasma SCN(-) levels and 3-chlorotyrosine concentrations (r=0.6182; P<0.0001). These correlations were also significant for smokers (r=0.2724; P<0.05) and nonsmokers (r=0.4141; P<0.01) when analyzed as individual groups. These data indicate that plasma SCN(-) levels are a key determinant of the extent and type of protein oxidation induced by MPO on isolated and plasma proteins and that smoking status and resulting high SCN(-) levels can markedly modulate the levels of the widely used biomarker compound 3-chlorotyrosine.  相似文献   

4.
Smokers have an elevated risk of atherosclerosis but the origins of this elevated risk are incompletely defined, though evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall. We hypothesized that smokers would have a high level of thiocyanate (SCN(-)), a preferred substrate for MPO, which in turn would predispose to thiol oxidation, an established independent risk factor for atherosclerosis. In this study it is shown that on exposure to MPO/H(2)O(2), thiols on plasma proteins from nonsmokers were increasingly oxidized with increasing added SCN(-) concentrations. Plasma from smokers contained significantly higher endogenous levels of SCN(-) than that from nonsmokers (131±31 vs 40±24 μM, P<0.0001). When plasma from smokers and nonsmokers was exposed to MPO/H(2)O(2)-stimulated oxidation, a strong positive correlation (r=0.8139, P<0.0001) between the extent of thiol oxidation and the plasma SCN(-) concentrations was observed. Computational calculations indicate a changeover from HOCl to HOSCN as the major MPO-generated oxidant in plasma, with increasing SCN(-) levels. These data indicate that plasma SCN(-) levels are a key determinant of the extent of thiol oxidation on plasma proteins induced by MPO, and implicate HOSCN as an important mediator of inflammation-induced oxidative damage to proteins in smokers.  相似文献   

5.
Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes.  相似文献   

6.
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.  相似文献   

7.
Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250 µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9–125 µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50 µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.  相似文献   

8.
Objectives: This study was designed to compare the levels of copper/zinc superoxide dismutase (Cu/Zn SOD), peroxidase (POx) and glutathione peroxidase (GSH‐Px) in saliva of smokers and those in saliva of non‐smokers. Methods: Unstimulated saliva samples were collected from 88 elderly males (65 years old or over) who visited a private dental clinic. Forty‐four subjects were current smokers (more than 20 cigarettes daily for at least 30 years) and 44 were non‐smokers. The levels of salivary thiocyanate, Cu/Zn SOD, GSH‐Px, and POx activity were measured using standard procedures. Results: The mean levels of salivary thiocyanate (SCN?) and SOD were significantly higher (p < 0.01) in the smoking group than in the non‐smoking group, whereas the specific activity levels of POx and GSH‐Px were significantly higher (p < 0.05) in the non‐smoking group than in the smoking group. Significant correlation coefficients were found between the levels of SCN? and SOD (r = 0.37, p < 0.001). In the non‐smoking group, a significant positive association was found between specific activity of POx and age (r = 0.33, p < 0.05). Conclusion: Measurement of SCN? and Cu/Zn SOD in human saliva might be useful for estimating the level of oxidative stress caused by cigarette smoke. Despite increased H2O2 level as a defense system induced by SOD, detoxification of H2O2 might be deteriorated in the oral cavity of elderly smokers.  相似文献   

9.
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN/HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN) and hydrogen peroxide (H2O2) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host–pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.  相似文献   

10.
Myeloperoxidase (MPO) is recognised to play important roles both in the immune system and during the development of numerous human pathologies. MPO is released by activated neutrophils, monocytes and some tissue macrophages, where it catalyses the conversion of hydrogen peroxide to hypohalous acids (HOX; X = Cl, Br, SCN) in the presence of halide and pseudo-halide ions. The major reactive species produced by MPO under physiological conditions are hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN), with the ratio of these oxidants critically dependent on the concentration of thiocyanate ions (SCN?). The reactivity and selectivity of HOCl and HOSCN for biological targets are markedly different, indicating that SCN? ions have the potential to modulate both the extent and nature of oxidative damage in vivo. This article reviews recent developments in our understanding of the role of SCN? in modulating the formation of MPO-derived oxidants, particularly in respect to the differences in reaction kinetics and targets of HOCl compared to HOSCN and the ability of these two oxidants to induce damage in biological systems.  相似文献   

11.
Activated white cells use oxidants generated by the heme enzyme myeloperoxidase to kill invading pathogens. This enzyme utilizes H2O2 and Cl, Br, or SCN to generate the oxidants HOCl, HOBr, and HOSCN, respectively. Whereas controlled production of these species is vital in maintaining good health, their uncontrolled or inappropriate formation (as occurs at sites of inflammation) can cause host tissue damage that has been associated with multiple inflammatory pathologies including cardiovascular diseases and cancer. Previous studies have reported that sulfur-containing species are major targets for HOCl but as the reactions are fast the only physiologically relevant kinetic data available have been extrapolated from data measured at high pH (>10). In this study these values have been determined at pH 7.4 using a newly developed competition kinetic approach that employs a fluorescently tagged methionine derivative as the competitive substrate (k(HOCl + Fmoc-Met), 1.5×108 M−1 s−1). This assay was validated using the known k(HOCl + NADH) value and has allowed revised k values for the reactions of HOCl with Cys, N-acetylcysteine, and glutathione to be determined as 3.6×108, 2.9×107, and 1.24×108 M−1 s−1, respectively. Similar experiments with methionine derivatives yielded k values of 3.4×107 M−1 s−1 for Met and 1.7×108 M−1 s−1 for N-acetylmethionine. The k values determined here for the reaction of HOCl with thiols are up to 10-fold higher than those previously determined and further emphasize the critical importance of reactions of HOCl with thiol targets in biological systems.  相似文献   

12.
Several studies have identified tobacco smoking as a risk factor for anal cancer in both women and men. Samples of anal epithelium from haemorrhoidectomy specimens from current smokers (n=20) and age-matched life-long non-smokers (n=16) were analysed for DNA adducts by the nuclease P1 digestion enhancement procedure of 32P-postlabelling analysis. The study included 14 men and 22 women. Both qualitative and quantitative differences in the adduct profiles were observed between the smokers and non-smokers. The mean adduct level was significantly higher in the smokers than in the non-smokers (1.88±0.71 (S.D.) versus 1.36±0.60 adducts per 108 nucleotides, P=0.02, two-tailed unpaired t-test with Welch’s correction); furthermore, the adduct pattern seen in two-dimensional chromatograms revealed the smoking-related diagonal radioactive zone in 17/20 smokers, but not in any of the non-smokers (P<0.00001, Fisher’s exact test). These results indicate that components of tobacco smoke inflict genotoxic damage in the anal epithelium of smokers and provide a plausible mechanism for a causal association between smoking and anal cancer.  相似文献   

13.
Diffusion of thiocyanate (SCN?) and thiocyanic acid (HSCN) (pK=?1.8) through lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine or phosphatidylcholine plus cholesterol (1:1 mol ratio) dissolved in decane or tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to HSCN and SCN?. Over the pH range 1.0 to 3.3 only HSCN crosses the membrane at a significant rate. The relation between the total SCN flux (JA), concentrations and permeabilities is: 1/JA=1/Pul([A?]+[HA])+1/PHAm[HA], where [A?] and [HA] are the concentrations of SCN? and HSCN, Pul is permeability coefficient of the unstirred layer, and PHAm is the membrane permeability to HSCN. By fitting this equation to the data we find that PHAm = 2.6 cm · s?1 and Pul = 9.0 · 10?4 cm · s?1. Conductance measurements indicate that PA?m is 5 · 10?9 cm · s?1. Addition of cholesterol to phosphatidylcholine (1:1 mol ratio) reduces PHAm by a factor of 0.4 but has no effect on PA?m. SCN? is potent inhibitor of acid secretion in gastric mucosa, but the mechanism of SCN? action is unknown. Our results suggest that SCN? acts by combining with H+ in the mucosal unstirred layer (secretory pits) and diffusing back into the cells as HSCN, thus dissipating the proton gradient across the secretory membrane. A similar mechanism of action is proposed for some other inhibitors of gastric acid secretion, e.g. nitrite (NO2?), cyanate (CNO?) and NH4+.  相似文献   

14.
Abstract

The paper reports levels of 24-h urine nicotine and five of its major metabolites (expressed as nicotine-equivalents) and blood carboxyhaemoglobin as biomarkers of exposure to particulate- and gas-phase cigarette smoke, respectively, from an exploratory pilot study of adult smokers of 3.0–6.9 mg tar delivery (Federal Trade Commission (FTC) method) cigarettes. On multiple occasions over 6 weeks, blood high-sensitivity C-reactive protein (hs-CRP), fibrinogen, HDL- and LDL-cholesterol, and 24-h urine 8-epi-prostaglandin F (8-epi-PGF) and 11-dehydro-thromboxane B2 (11-dehydro-TxB2) were also evaluated as biomarkers of potential harm. All the biomarkers examined, except for LDL-cholesterol, discriminated with high sensitivity and specificity between adult smokers and non-smokers overall. Except for HDL-cholesterol, all biomarker medians were greater in adult smokers than in non-smokers: urine nicotine-equivalents 64.514 versus??1 creatinine (p<0.001), carboxyhaemoglobin 4.0 versus 0.4% saturation (p<0.001), hs-CRP 0.27 versus 0.12 mg dl?1 (p=0.05), fibrinogen 292 versus 248 mg dl?1 (p<0.001), HDL-cholesterol 46 versus 53 mg dl?1 (p=0.003), LDL-cholesterol 119 versus 109 mg dl?1 (p=0.18), urine 8-epi-PGF 1935 versus 1034 pg mg?1 creatinine (p<0.001) and urine 11-dehydro-TxB2 973 versus 710 pg mg?1 creatinine (p<0.001). All the biomarkers of exposure and most of the biomarkers of potential harm showed no time of sampling (by visit week) effect.  相似文献   

15.
γ-Glutamyltransferase from fruiting bodies of Lentinus edodes was further tested for its activation by chaotropic ions such as SCN?, NO3?, Cl?, Br?, I?, F? and C1O4?. The thiocyanate ion increased the Km value for γ-glutamyl-p-nitroanilide without affecting the Vmax value of the reaction, whereas other anions as represented by NO3? and Br? increased the Vmax without affecting the Km. Jhe inactivation of the enzyme by the SH group-orienting reagents, iodoacetamide and hydrogen peroxide, was stimulated by SCN? but not by the other anions.

The activator anions protected the enzyme against its inactivation by chemical modification with 2,3-butanedione in borate. Their efficiency was parallel to the activator potency of the respective anions, except for SCN? which provided less protection than expected from its activation potency. These dissociable effects of activator anions might be explained by two different mechanisms; binding of SCN? to a basic group to bring about a significant change in protein conformation and binding of other anions by electrostatic and hydrophobic forces to an arginyl residue located near the active site of the enzyme.  相似文献   

16.
Elevated MPO (myeloperoxidase) levels are associated with multiple human inflammatory pathologies. MPO catalyses the oxidation of Cl-, Br- and SCN- by H2O2 to generate the powerful oxidants hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN) respectively. These species are antibacterial agents, but misplaced or excessive production is implicated in tissue damage at sites of inflammation. Unlike HOCl and HOBr, which react with multiple targets, HOSCN targets cysteine residues with considerable selectivity. In the light of this reactivity, we hypothesized that Sec (selenocysteine) residues should also be rapidly oxidized by HOSCN, as selenium atoms are better nucleophiles than sulfur. Such oxidation might inactivate critical Sec-containing cellular protective enzymes such as GPx (glutathione peroxidase) and TrxR (thioredoxin reductase). Stopped-flow kinetic studies indicate that seleno-compounds react rapidly with HOSCN with rate constants, k, in the range 2.8×10(3)-5.8×10(6) M-1·s-1 (for selenomethionine and selenocystamine respectively). These values are ~6000-fold higher than the corresponding values for H2O2, and are also considerably larger than for the reaction of HOSCN with thiols (16-fold for cysteine and 80-fold for selenocystamine). Enzyme studies indicate that GPx and TrxR, but not glutathione reductase, are inactivated by HOSCN in a concentration-dependent manner; k for GPx has been determined as ~5×105 M-1·s-1. Decomposed HOSCN did not induce inactivation. These data indicate that selenocysteine residues are oxidized rapidly by HOSCN, with this resulting in the inhibition of the critical intracellular Sec-dependent protective enzymes GPx and TrxR.  相似文献   

17.
A key function of neutrophil myeloperoxidase (MPO) is the synthesis of hypochlorous acid (HOCl), a potent oxidizing agent that plays a cytotoxic role against invading bacteria and viruses at inflammatory sites and in phagosomes. MPO displayed a chlorinating activity preferably at acidic pH but at neutral pH MPO catalyzes mainly reactions of the peroxidase cycle. In the present work effects of tyrosine on the chlorinating activity of MPO were studied. At pH 7.4 we detected an increased HOCl production in the presence of tyrosine not only by the MPO-H2O2-Cl- system but also in suspensions of zymosan-activated neutrophils. An excess of H2O2 is known to cause an accumulation of compound II of MPO blocking the generation of HOCl at neutral pH. As evidenced by spectral changes, tyrosine-induced activation of MPO to synthesize HOCl was due to the ability of tyrosine to reduce compound II back to the native state, thus accelerating the enzyme turnover. MPO-induced oxidation of tyrosine is relevant to what can be in vivo; we detected MPO-catalyzed formation of dityrosine in the presence of plasma under experimental conditions when tyrosine concentration was about three magnitudes of order less than the Cl concentration. At acidic pH formation of compound II was impaired in the presence of chloride and dityrosine couldn't be detected in plasma. In conclusion, the ability of tyrosine to increase the chlorinating activity of MPO at neutral pH and enhanced values of H2O2 may be very effective for the specific enhancement of HOCl production under acute inflammation.  相似文献   

18.
Abstract

The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1×107 M-1s-1 (pH 5), 2.0×108 M-1s-1 (pH 7) and 2.0×106 M-1s-1 (pH 9) at 15°C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

19.
Abstract: We investigated survival and cause-specific mortality of mule deer (Odocoileus hemionus) on 3 distinct winter ranges in southwest Idaho from 1992 to 1997 to identify demographic variation and potential limiting factors based on a sample of 447 radiocollared deer. During winters 1995–1996 and 1996–1997, we modeled overwinter fawn mortality based on early winter mass, sex, activity, and habitat use variables. Annual survival rates of adult mule deer varied among the 3 adjacent study areas (χ22 = 10.93, P = 0.004). Overwinter deer survival also varied among study areas (χ22 = 8.00, P = 0.018), and the study area X year, study area X sex, and study area X age interactions were all significant (P ≤ 0.018). Overwinter survival differences among the study areas were not consistent over time or among sexes and ages of deer. Winter malnutrition was the main cause of mortality for both adults and fawns during the severe winter of 1992–1993, when overall survival was low. Excluding harvest, predation was the major proximate cause of deer mortality during 1993–97 when overall survival was higher. The probability of winter fawn mortality increased with lower mass (χ21 = 7.38, P = 0.007), being male (χ21 = 5.61, P = 0.018), smaller group sizes (χ21 = 3.62, P = 0.057), and using steeper slopes (χ21 = 3.05, P = 0.081). Smaller group sizes and use of steep slopes corresponded to conditions where predators were more successful. Our findings suggest that coyote (Canis latrans) predation was largely compensatory whereas mountain lion (Puma concolor) predation was apparently independent of animal condition and dependent more on deer habitat use. Early winter fawn mass was a better predictor of overwinter fawn survival than a suite of winter resource use variables, lending further support for use of fawn mass to predict winters where fawn mortality may be high. No single population in this study could be used to make reliable inferences regarding deer survival in the other populations. Survival rate measurements should be used cautiously to make inferences in populations where survival has not been directly measured.  相似文献   

20.
Different studies have produced conflicting results regarding the association between smoking and diabetes mellitus, and detailed analysis of this issue in Chinese males based on nationwide samples is lacking. We explored the association between cigarette smoking and newly-diagnosed diabetes mellitus (NDM) in Chinese males using a population-based case-control analysis; 16,286 male participants without previously diagnosed diabetes were included. Prediabetes and NDM were diagnosed using the oral glucose tolerance test. The cohort included 6,913 non-smokers (42.4%), 1,479 ex-smokers (9.1%) and 7,894 current smokers (48.5%). Age-adjusted glucose concentrations (mmol/L) were significantly lower at fasting and 120 min in current smokers than non-smokers (5.25 vs. 5.30, 6.46 vs. 6.55, respectively, both P < 0.01). After adjustment for demographic and behavioral variables (age, region, alcohol consumption status, physical activity, education, and family history of diabetes), logistic regression revealed significant negative associations between smoking and NDM in males of a normal weight (BMI < 25 kg/m2: adjusted odds ratio [AOR] = 0.75, P = 0.007; waist circumference < 90 cm: AOR = 0.71, P = 0.001) and males living in southern China (AOR = 0.75, P = 0.009), but not in males who were overweight/obese, males with central obesity, or males living in northern China. Compared to non-smokers, current smokers were less likely to be centrally obese or have elevated BP (AOR: 0.82 and 0.74, both P < 0.05), and heavy smokers (≥ 20 pack-years) were less likely to have elevated TG (AOR = 0.84, P = 0.012) among males of a normal weight. There were no significant associations between quitting smoking and metabolic disorders either among males of a normal weight or males who were overweight/obese. In conclusion, smokers have a lower likelihood of NDM than non-smokers among Chinese males with a lower BMI/smaller waist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号