首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25°C and 0.95 aw. No growth was observed at 10°C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25°C∼30°C for A. carbonarius and 30°C∼37°C for A. niger aggregate. The optimal aw for toxin production was 0.95∼0.99 for A. carbonarius and 0.90∼0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 μg/g) was produced at 37°C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 μg/g) were observed at 25°C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.  相似文献   

2.
The effect of the rapid reduction of the water activity (aw) on the extracellular protein and amylolytic activity of Aspergillus niger was studied. An aw value gradient from 0.90 to 0.99 in KCl solutions was applied for the mycelium treatment. It was found that the aw reduction considerably influenced the protein secretion. This phenomenon was dependent on the age of the treated mycelium and the range of the aw gradient. The highest protein and enzyme secretion yields were obtained at aw = 0.98 using a 72-h old mycelium. In comparison with the non-treated mycelium, the increase in the secretion amounted to about 60% for the amylolytic activity and 37% for the soluble protein, respectively. It was shown that the mycelium incubated in KCl solutions of an aw value from 0.90 to 0.99 had the ability for regeneration in fresh CZAPEK-DOX medium. The effect of the osmotic shock on the protein secretion was limited only for the treated cell population and declined in the mycelium which was regenerated after the transfer into the culture medium.  相似文献   

3.
This study examined six strains of Beauveria bassiana s.l. and Isaria farinosa, one strain of Isaria fumosorosea and five strains of Metarhizium anisopliae s.l. to identify the ability for (1) growth and (2) sporulation under interacting environmental factors of water activity (aw) and temperature stress. Growth on Sabouraud Dextrose Agar (SDA; water activity, aw = 0.995) or SDA modified with glycerol to 0.98, 0.96 and 0.94 aw was measured at four different temperatures (25, 30, 35 and 37°C). All M. anisopliae strains grew at 25–35°C and 0.995 aw while only two strains tolerated extreme water stress at 0.94 aw.Three strains of B. bassiana were able to grow at 25–37°C and 0.995 aw. Only one strain of I. farinosa was able to grow at 25–37°C and 0.995 aw. Aw and temperature interactions resulted in different strain-dependent responses, in terms of growth and sporulation. Only one strain of I. farinosa and three of M. anisopliae grew at 0.94 aw and none of the B. bassiana strains tolerated such water stress. At 0.96 and 0.94 aw and 35–37°C, sporulation by all the strains of the three species were significantly affected. Under elevated temperatures and drought stress, very few of these strains of entomopathogenic fungi are able to grow and sporulate. Indeed, the B. bassiana strains were unable to tolerate the extreme conditions examined. Resilience to such abiotic interactions is critical for selecting strains for formulations. Tolerance to water and temperature stress could be good criteria for selection of strains with secondary spread potential for use as part of an integrated pest management system where secondary cycling may be important, especially in sub-tropical and tropical environments.  相似文献   

4.
The objectives were to determine the influence of water activity (aw, 0.997–0.92) and temperature (10–37°C) and their interactions on conidial germination, mycelial growth and sporulation of two strains of Stachybotrys chartarum in vitro on a potato dextrose medium. Studies were carried out by modifying the medium with glycerol and either spread plating with conidia to evaluate germination and germ tube extension or centrally inoculating treatment media for measuring mycelial growth rates and harvesting whole colonies for determining sporulation. Overall, germination of conidia was significantly influenced by aw and temperature and was fastest at 0.997–0.98 aw between 15 and 30°C with complete germination within 24 h. Germ tube extension was found to be most rapid at similar aw levels and 25–30°C. Mycelial growth rates of both strains were optimal at 0.997 aw between 25 and 30°C, with very little growth at 37°C. Sporulation was optimum at 30°C at 0.997 aw. However, under drier conditions, this was optimum at 25°C. This shows that there are differences in the ranges of aw x temperature for germination and growth and for sporulation. This may help in understanding the role of this fungal species in damp buildings and conditions under which immune-compromised patients may be at risk when exposed to such contaminants in the indoor air environment.  相似文献   

5.
A Phoma sp., known to produce the pharmaceutically active metabolites squalestatin 1 (S1) and squalestatin 2 (S2), was cultured on malt-extract/agar (MEA) over a range of water activities (a w, 0.995–0.90) and temperatures (10–35 °C) to investigate the influence on growth and metabolite production. Use of the ionic solute NaCl to adjust a w resulted in significantly lower (P < 0.01) squalestatin yields than when the Phoma sp. was grown on MEA amended with the non-ionic solute glycerol. Water activity and temperature and their interactions were highly significant factors (P < 0.001) affecting growth of the Phoma sp., with optimum conditions of 0.998–0.980 a w and 25 °C. Squalestatin production was similarly influenced by a w, temperature, time and their interactions (P < 0.001). S1 and S2 production occurred over a narrower a w and temperature range than growth, with a slightly lower optimum a w range of 0.995–0.980 a w. The optimum temperature for squalestatin production varied from 20 °C (S1) to 25 °C (S2) and yields of S2 were up to 1000 times lower than those of S1. The ratio of S1 and S2 produced by the Phoma sp. was influenced by a w and temperature, with highest values at 0.99–0.98 a w, and at 15 °C. Incubation times of 28 days gave highest yields of both S1 and S2. Up to 2000-fold increases in squalestatin yields were measured at optimum environmental conditions, compared to the unmodified MEA. This indicates the need to consider such factors in screening systems used to detect biologically active lead compounds produced by fungi. Received: 2 June 1997 / Received last revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

6.
Aims: To determine the effect of water activity (aw = 0·880–0·960) and temperature (15–35°C) on the percentage of viable conidia and mycelial growth of three biocontrol agents effective against water hyacinth in Mali: Alternaria sp. isolate Mlb684, Fusarium sacchari isolate Mln799 and Cadophora malorum isolate Mln715. Methods and Results: The fungi were grown in vitro on plates containing potato dextrose agar medium at different aw values (glycerol being added to adjust the aw). The percentage of viable conidia and radial growth rate decreased with decreasing water activity. Statistical analysis showed a significant effect of aw, temperature and the aw × temperature interaction on mycelial growth (P < 0·0001). Water activity emerged as the factor exerting the greatest influence. Differences were observed between the fungi tested, the C. malorum appearing more tolerant to low aw and the F. sacchari more tolerant to high temperature (35°C). Growth models predicting the combined effect of aw and temperature were developed and response surfaces generated, showing fairly good agreement with the experimental values. Conclusions: Our results confirm the previous finding that aw has a greater influence than temperature on fungal growth. Under most conditions, variation of environmental factors has a detrimental influence on the percentage of viable conidia and mycelial growth rate of fungal isolates. Significance and Impact of the Study: The developed models may contribute to predicting the best environmental conditions for use of these fungi as effective biocontrol agents against water hyacinth.  相似文献   

7.
The enzymatic esterification of the prochiral substrate, 2-benzyl-1,3-propanediol, has been studied in solvent media. Among the five tested lipases, Lipozyme and Novozym 435 led to higher reaction rates. Novozym 435 catalyzed faster reactions at low water activity and in solvents having log P above 2. However, the two positions of the diol, pro-(R) and pro-(S), led to the same reaction rate trends and no prochiral selectivity was obtained. When using Lipozyme in toluene, the reaction rates for the formation of both (R) and (S) products presented an optimum at a water activity of 0.22. In this case, the prochiral selectivity increased with the water activity, from a value of 5 at a w < 0.01, to a value of 8 at a w = 0.22, at which point it remained constant.  相似文献   

8.
Abstract

The presence of two different additives during non-covalent immobilization of lipase was studied. Lipase was immobilized via hydrophobic interactions on an amorphous silica with large pore size bearing octyl groups on the surface. Polyethyleneglycol (PEG) with different molecular weights (MW: 1500, 3000 and 10,000) were added to the suspension during enzyme immobilization, in an enzyme to PEG molar ratio of 1:10, and also 1:20 in the case of PEG1500. The activity after 15 d increased from 10% (absence of PEG) to values close to 40% in samples with PEG except the catalyst immobilized in the presence of 1:10 PEG1500, which kept fully active after 15 d incubation in toluene at 70?°C. The presence of water during storage of immobilized enzymes leads to significant activity loss. Saturated solutions of salts controlling the water activity of the systems were used to reduce in a controlled fashion the moisture of the systems: CaCl2 (aw=?0.037), MgCl2 (aw=?0.328), Mg(NO3)2 (aw=?0.529), Na2PO4.12H2O (aw=?0.74) and KCl (aw=?0.84). The immobilized lipase was suspended in saturated solutions of these salts, and then filtered and incubated in desiccators in the presence of the corresponding saturated salt solutions. Catalysts suspended and incubated in KCl or only suspended in phosphate kept some 20% activity after 33 d incubation whereas the maximal stability was achieved when the catalyst was suspended in phosphate and kept in a desiccator without salt solution. This catalyst kept around 50% activity after 33 d incubation. An inversely proportional relationship can be established between the stability achieved by the enzyme and the water content of the system.  相似文献   

9.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

10.
Aims: To develop and validate a logistic regression model to predict the growth and ochratoxin A (OTA) production boundaries of two Aspergillus carbonarius isolates on a synthetic grape juice medium as a function of temperature and water activity (aw). Methods and Results: A full factorial design was followed between the factors considered. The aw levels assayed were 0·850, 0·880, 0·900, 0·920, 0·940, 0·960, 0·980 and the incubation temperatures were 10, 15, 20, 25, 30, 35 and 40°C. Growth and OTA production responses were evaluated for a period of 25 days. Regarding growth boundaries, the degree of agreement between predictions and observations was >99% concordant for both isolates. The erroneously predicted growth cases were 3·4–4·1% false‐positives and 0·7–1·4% false‐negatives. No growth was observed at 10°C and 40°C for all aw levels assayed, with the exception of 0·980 aw/40°C, where weak growth was observed. Similarly, OTA production was correctly predicted with a concordance rate >98% for the two isolates with 0·7–1·4% accounting for false‐positives and 2·0–2·7% false‐negatives. No OTA production was detected at 10°C or 40°C regardless of aw, and at 0·850 aw at all incubation temperatures. With respect to time, the OTA production boundary shifted to lower temperatures (15–20°C) as opposed to the growth boundary that shifted to higher temperature levels (25–30°C). Using two literature datasets for growth and OTA production of A. carbonarius on the same growth medium, the logistic model gave one false‐positive and three false‐negative predictions out of 68 growth cases and 13 false‐positive predictions out of 45 OTA production cases. Conclusions: The results of this study suggest that the logistic regression model can be successfully used to predict growth and OTA production interfaces for A. carbonarius in relation to temperature and aw. Significance and Impact of the Study: The proposed modelling approach helps the understanding of fungal‐food ecosystem relations and it could be employed in risk analysis implementation plans to predict the risk of contamination of grapes and grape products by A. carbonarius.  相似文献   

11.
Six actinomycetes were isolated from peanuts in Egypt. Of these, a Streptomyces strain (AS1) was found in in vitro assays to inhibit directly or via secondary metabolites both germination and growth of Aspergillus flavus. Tests of the AS1 cells for direct control of A. flavus populations or aflatoxin B1 (AFB1) production on stored peanuts was unsuccessful over 14-day storage periods. However, crude extracts of AS1 metabolites at 50 and 100 ppm completely inhibited spore germination of conidia of A. flavus in vitro over 48 h. Comparison of solvents for extracting the metabolites showed that the ethyl acetate extract was most effective. This gave greater than 85% inhibition of mycelial growth at these concentrations at different water availabilities (water activity; a w; 0.95, 0.92, and 0.89) and 25°C. Doses of 50, 200, and 500 ppm of AS1 metabolites significantly inhibited populations of A. flavus on stored peanuts at two water stress levels (0.90, 0.93 a w) at 25°C over 14-day storage periods. The amounts of AFB1 produced by A. flavus on peanuts stored at 0.90 a w were significantly decreased by AS1 metabolites for only 7 days. However, at 0.93 a w doses of 200 and 500 ppm significantly controlled AFB1 accumulation in peanuts for 14 days.  相似文献   

12.
Aims: This study was conducted to characterize the growth of and aflatoxin production by Aspergillus flavus on paddy and to develop kinetic models describing the growth rate as a function of water activity (aw) and temperature. Methods and Results: The growth of A. flavus on paddy and aflatoxin production were studied following a full factorial design with seven aw levels within the range of 0·82–0·99 and seven temperatures between 10 and 43°C. The growth of the fungi, expressed as colony diameter (mm), was measured daily, and the aflatoxins were analysed using HPLC with a fluorescence detector. The maximum colony growth rates of both isolates were estimated by fitting the primary model of Baranyi to growth data. Three potentially suitable secondary models, Rosso, polynomial and Davey, were assessed for their ability to describe the radial growth rate as a function of temperature and aw. Both strains failed to grow at the marginal temperatures (10 and 43°C), regardless of the aw studied, and at the aw level of 0·82, regardless of temperature. Despite that the predictions of all studied models showed good agreement with the observed growth rates, Davey model proved to be the best predictor of the experimental data. The cardinal parameters as estimated by Rosso model were comparable to those reported in previous studies. Toxins were detected in the range of 0·86–0·99 aw with optimal aw of 0·98 and optimal temperature in the range of 25–30°C. Conclusions: The influences of aw and temperature on the growth of A. flavus and aflatoxin production were successfully characterized, and the models developed were found to be capable of providing good, related estimates of the growth rates. Significance and Impact of the Study: The results of this study could be effectively implemented in minimizing the risk of aflatoxin contamination of the paddy at postharvest.  相似文献   

13.
Transesterification activity and the industrial potential of a novel lipase prepared from Acinetobacter ventiatus RAG-1 were evaluated. Purified lipase samples were dialyzed against pH 9.0 buffer in a single optimization step prior to lyophilization. The enzyme and organic phase were pre-equilibrated (separately) to the same thermodynamic water activities (a w) ranging from a w 0.33 to 0.97. Production of 1-octyl butyrate by lipase-catalyzed transesterification of vinyl butyrate with 1-octanol in hexane was monitored by gas chromatography. Production of 1-octyl butyrate and initial rate of reaction depended on water activity. Product synthesis and rate of transesterification increased sharply with increase from a w 0.33 to 0.55. Highest product concentration (218 mM) and rate of reaction (18.7 μmol h−1 · 10 μg protein) were measured at a w 0.86. Transesterification activity in hexane represented 32% of comparable hydrolytic activity in aqueous buffer.  相似文献   

14.
Aim: To investigate the influence of reducing beef surface water activity (aw) on the survival of Salmonella Typhimurium DT104 during heating. Methods and Results: Beef discs were surface inoculated with S. Typhimurium DT104 and either untreated or dried to achieve surface aw values of 0·95, 0·85 and 0·70. The samples were vacuum packed, heat‐treated at 60°C and removed at predetermined times. The inactivation curves were influenced by aw and treatment time. Biphasic inactivation curves were observed for S. Typhimurium DT104 heat‐treated on beef samples with altered aw values, which were characterized by an initial decline in cell numbers at commencement of heating followed by a much slower rate of inactivation during the remaining treatment period. Point estimates of the heating time required to achieve a 1 log reduction on beef surfaces with aw of 0·99, 0·95, 0·85 and 0·70 were 0·5, 1·55, 11·25 and 17·79 min, respectively. Conclusions: A decrease in beef surface aw can substantially enhance the survival of S. Typhimurium DT104 after heating. Significance and Impact of the Study: Caution needs to be taken using dry air as a decontamination method as this may rapidly decrease product surface and pathogen aw values resulting in enhanced survival.  相似文献   

15.
Summary In enzymatic synthesis of cephalexin (CEX) from 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and D--phenylglycine methyl ester (PGM) using an acylase fromXanthomonas citri, it was found that the synthetic activity and conversion yield were enhanced markedly by depressing the water activity (a w ) of reaction system. This enhancement was probably resulted from the change of thermodynamic equilibrium and maximized at a range ofa w from 0.96 to 0.97.  相似文献   

16.
Thermostable purine nucleoside phosphorylases, PUN PI and PUNPII, have been purified from Bacillus stearothermophilus JTS 859. The characterization of PUNPI was reported previously. [Hori et al.9 Agric. Biol. Chem. 53, 2205 (1989)] PUNPII had a molecular weight of 113,000, consisting of 4 identical subunits (Mw 28,000). The isoelectric point was 5.3. The Michaelis constants for inosine, guanosine, and adenosine were 0.22, 0.34, and 0.075 mm, respectively. The optimal temperature of the reaction was 70°C. The enzyme was stable at 70°C. Although other reported purine nucleoside phosphorylases were SH-enzymes, PUNPII was not a SH-enzyme because the enzyme reaction was not inhibited by PCMB and iodoacetic acid, the optimal pH of the enzyme reaction was from 7.0 to 11.0, and the enzyme did not contain cysteine.

PUNPII and PUNPI were different in several points. Not PUNPI but PUNPII could catalyze the phosphorolysis of adenosine. Specific activity of PUNPI and II for inosine were 405 and 50.6 μmol/min/mg protein at 60°C, respectively. PUNPI was stable at 80°C. PUNPII was stable at 70°C, but was denatured at 80°C.  相似文献   

17.
Aspergillus carbonarius is known to colonize and produce ochratoxin A (OTA) on grapes and its derived products which is harmful to humans. We screened and tested A. carbonarius strains which isolated from grapes for production of OTA and selected three high OTA producing strains (ACSP1, ACSP2, ACSP3) for this study. These strains were further tested for their ability to produce OTA at different ecological factors [temperature 15, 25, 30, 35°C; water activity (aw) 0.98, 0.95, 0.90, 0.88; and pH 4.0, 7.0, 9.0, 10.0]. Out of the three strains tested, A. carbonarius ACSP3 produced high levels of OTA than ACSP2 and ACSP1 in all the ecological factors. At 30°C A. carbonarius strains produced the highest OTA compared with other temperature regimes. With reference to water activity, aw 0.98 favoured mycelial growth and accumulation of more OTA with all the three A. carbonarius strains. Further, pH 4.0 was encouraged the greatest production of OTA in all the strains. No growth was observed at aw 0.88 and pH 10.0 in all the three strains except the strain ACSP3 at high pH. Our work demonstrated that temperature 30°C, aw 0.98 and pH 4.0 is optimum for growth and production of OTA by A. carbonarius strains. Maximum amounts of OTA were found at earlier growth stages (7–9 days of incubation) in all the strains of A. carbonarius. The present study revealed that different ecological factors had great impact on OTA production by A. carbonarius which is useful for understanding OTA contamination and to develop proper management practices in future research programmes.  相似文献   

18.
The benefits of controlling water activity, a w, during enzymatically catalysed synthesis reactions, such as reverse-hydrolytic reactions promoted by lipases, are now well recognized. Numerous techniques for controlling a w in the laboratory and their implementation in continuous reactors have been discussed in the published literature. However, in enzymatic interesterification reactions, such as acidolysis and transesterification, it is not appropriate merely to maintain the a w of the reaction system at one value since the two stages of the reaction, namely the cleavage of the original acyl bond and the formation of a new one, are best carried out at different levels of water activity – the former at a high a w and the latter at a lower one. The use of a continuous packed-bed hollow-fibre reactor has been described in this article for carrying out solvent-free acidolysis of ethyl laurate with octanoic acid with in situ a w control, using air that has been pre-equilibrated with saturated salt solutions to the desired a w. At a single optimum (a w = 0.54), the highest steady-state conversion to ethyl octanoate was 32%. However, it is possible to obtain a steady-state conversion of 46% by operating the reactor with a step change in the water activity, from an initial value of unity to 0.23. Received: 10 February 1998 / Received revision: 2 June 1998 / Accepted: 7 June 1998  相似文献   

19.
《Fungal biology》2019,123(8):618-624
This study examined the effect of climate change (CC) abiotic factors of temperature (20, 25, 30 °C), water activity (aw; 0.995, 0.98) and CO2 exposure (400, 1000 ppm) may have on (a) growth, (b) gene expression of biosynthetic toxin genes (Tri5, Tri6, Tri16), and (c) T-2/HT-2 toxins and associated metabolites by Fusarium langsethiae on oat-based media and in stored oats. Lag phases and growth were optimum at 25 °C with freely available water. This was significantly reduced at 30 °C, at 0.98 aw and 1000 ppm CO2 exposure. In oat-based media and stored oats, Tri5 gene expression was reduced in all conditions except 30 °C, 0.98 aw, elevated CO2 where there was a significant (5.3-fold) increase. The Tri6 and Tri16 genes were upregulated, especially in elevated CO2 conditions. Toxin production was higher at 25 °C than 30 °C. In stored oats, at 0.98 aw, elevated CO2 led to a significant increase (73-fold) increase in T2/HT-2 toxin, especially at 30 °C. Nine T-2 and HT-2 related metabolites were detected, including a new dehydro T-2 toxin (which correlated with T-2 production) and the conjugate, HT-2 toxin, glucuronide. This shows that CC factors may have a significant impact on growth and mycotoxin production by F. langsethiae.  相似文献   

20.
Lee HB  Magan N 《Mycopathologia》1999,146(1):43-47
The effect of water availability (water activity,aw; 0.995–0.90) and temperature (18–30 °) on in vitro interactions between an ochratoxin producing strain of Aspergillus ochraceus and six other spoilage fungi was assessed in dual culture experiments on a maize meal-based agar medium. Inprimary resource capture of nutrient substrate, A. ochraceus was dominant against many of the interacting species, being able to overgrow and replace A. candidus, and sometimes A. flavus and the Eurotium spp. regardless of aw or temperature. However, with freely available water (0.995 aw) A. alternata and A. niger were dominant, with mutual antagonism between A. ochraceus and A. flavus at 25–30 °C. In the driest conditions tested (0.90 aw) there was also mutual antagonism between A. ochraceus and the two Eurotium spp. Overall, under allconditions tested the Index of Dominance for A. ochraceus was much higher than for other competing species combined suggesting that A. ochraceus wasa good competitive colonist able to replace a numberof other species. However, the growth rate ofA. ochraceus was modified and decreased by the interaction with competitors. Interaction between A. ochraceus and species such as A. alternata (18°C/0.995) and Eurotium spp. (0.995–0.95 and 25–30 °C) resulted in a significant stimulation of ochratoxin production. Theresults are discussed in relation to the effect that environmental factors have on the possible competitiveness of A. ochraceus in the maizegrain ecosystem and the role of ochratoxin in nicheexclusion of competitors. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号